我有N个bernoulli变量,X1
,...,XN
和Xi~B(1, pi)
,pi
已知每个Xi
和{{ 1}},现在我需要获得Y=X1+...XN
的分配。
如果Y
和Xi
在Xj
时是独立的,那么我可以使用模拟:
i!=j
但现在1. Generate `X1`, ..., `XN` via their distribution, and then get the value of `Y`;
2. Repet step 1 for 10000 times, and then I can get `Y1`, ..., `Y10000`, so I can konw the distribution of `Y`.
和Xi
是依赖的,所以我还需要考虑相关性,假设Xj
何时corr(Xi, Xj)=0.2
,我该如何插入相关性到模拟?或者通过其他方式获得Y的分布?
感谢您的帮助和建议。
答案 0 :(得分:0)
您可以通过导出给定另一个的条件分布来生成特定的成对相关(在限制范围内)。限制是您不能拥有完全任意的p值和相关性。然而,N-choose-2成对相关集隐含的同时约束对于N,p值和相关性的任意选择是不可行的。
以下Ruby实现显示了获取一对X的指定p值和相关性的计算:
# Control the run with command-line args.
# If no args provided, default to test case of
# p1 = 0.2, p2 = 0.8, rho = -0.5, sample size = 10
p1 = (ARGV.shift || 0.2).to_f
p2 = (ARGV.shift || 0.8).to_f
rho = (ARGV.shift || -0.5).to_f
n = (ARGV.shift || 10).to_i
# Calculate conditional probabilities for p2 given p1 = 0, 1
p2_given = [p2 - rho * Math::sqrt(p1 * p2 * (1.0 - p2) / (1.0 - p1)),
p2 + rho * Math::sqrt((1.0 - p1) * p2 * (1.0 - p2) / p1)]
printf "p2_given_1 = %8.5f, p2_given_0 = %8.5f\n", p2_given[1], p2_given[0]
# Only proceed to actually generate values if the conditional
# probabilities are between zero and one
if p2_given.inject(true) {|m, e| m &= (e >= 0 && e <= 1)}
n.times do
x1 = (rand <= p1) ? 1 : 0
x2 = (rand <= p2_given[x1]) ? 1 : 0
printf "%d,%d\n", x1, x2
end
end