我正在尝试为某些数据生成热图,我的代码如下所示:
data = [['basis', 2007, 2008],
[1, 2.2, 3.4],
[2, 0, -2.2],
[3, -4.1, -2.5],
[4, -5.8, 1.2],
[5, -5.4, -3.6],
[6, 1.4, -5.9]]
x_header = data[0][1:]
y_header = [i for i in range(1, 13)]
data=data[1:]
for i in range(len(data)):
data[i] = data[i][1:]
arr = np.array(data)
fig, ax = plt.subplots()
#heatmap = plt.pcolor(arr, cmap = 'RdBu')
norm = MidpointNormalize(midpoint=0)
im = ax.imshow(data, norm=norm, cmap=plt.cm.seismic, interpolation='none')
ax.set_xticks(np.arange(arr.shape[1]), minor=False)
ax.set_yticks(np.arange(arr.shape[0]), minor=False)
ax.xaxis.tick_top()
ax.set_xticklabels(x_header, rotation=90)
ax.set_yticklabels(y_header)
fig.colorbar(im)
plt.show()
生成图像
我还想在网格中显示值。有没有办法做到这一点?
答案 0 :(得分:15)
当然,只需做一些事情:
import matplotlib.pyplot as plt
import numpy as np
data = np.random.random((4, 4))
fig, ax = plt.subplots()
# Using matshow here just because it sets the ticks up nicely. imshow is faster.
ax.matshow(data, cmap='seismic')
for (i, j), z in np.ndenumerate(data):
ax.text(j, i, '{:0.1f}'.format(z), ha='center', va='center')
plt.show()
但是,很难看到标签,因此您可能需要一个方框:
import matplotlib.pyplot as plt
import numpy as np
data = np.random.random((4, 4))
fig, ax = plt.subplots()
# Using matshow here just because it sets the ticks up nicely. imshow is faster.
ax.matshow(data, cmap='seismic')
for (i, j), z in np.ndenumerate(data):
ax.text(j, i, '{:0.1f}'.format(z), ha='center', va='center',
bbox=dict(boxstyle='round', facecolor='white', edgecolor='0.3'))
plt.show()
此外,在许多情况下,ax.annotate
对ax.text
更有用。它在如何定位文本方面更灵活,但也更复杂。看看这里的示例:http://matplotlib.org/users/annotations_guide.html
答案 1 :(得分:-1)
如果您不想使用-f
,则可以简单地进行以下操作:
ax