我有一个非常大的多边形shapefile,有数百个功能,通常相互重叠。这些功能中的每一个都具有存储在属性表中的值。我只需要计算它们重叠区域的平均值。 我可以想象这个任务需要几个复杂的步骤:我想知道是否有一个简单的方法。 我对各种建议持开放态度,我可以使用ArcMap,QGis,arcpy脚本,PostGis,GDAL ......我只需要创意。谢谢!
答案 0 :(得分:4)
您应该使用ArcGIS中的Union tool。它将创建多边形重叠的新多边形。为了保持两个多边形的属性,将多边形shapefile添加两次作为输入,并使用ALL作为join_attributes参数。这也创建了与自身相交的多边形,您可以轻松地选择和删除它们,因为它们具有相同的FID。然后只需在属性表中添加一个新字段,并根据输入多边形中的两个原始值字段进行计算。 这可以在脚本中完成,也可以直接使用工具箱的工具完成。
答案 1 :(得分:1)
您可以将多边形光栅化为多个图层,每个像素都可以包含您的属性值。然后通过平均属性值来合并图层?
答案 2 :(得分:1)
经过几次尝试后,我通过单独栅格化所有特征然后执行细胞统计来计算平均值,找到了解决方案。 请参阅下面我写的剧本,请不要犹豫,评论和改进! 谢谢!
#This script processes a shapefile of snow persistence (area of interest: Afghanistan).
#the input shapefile represents a month of snow cover and contains several features.
#each feature represents a particular day and a particular snow persistence (low,medium,high,nodata)
#these features are polygons multiparts, often overlapping.
#a feature of a particular day can overlap a feature of another one, but features of the same day and with
#different snow persistence can not overlap each other.
#(potentially, each shapefile contains 31*4 feature).
#the script takes the features singularly and exports each feature in a temporary shapefile
#which contains only one feature.
#Then, each feature is converted to raster, and after
#a logical conditional expression gives a value to the pixel according the intensity (high=3,medium=2,low=1,nodata=skipped).
#Finally, all these rasters are summed and divided by the number of days, in order to
#calculate an average value.
#The result is a raster with the average snow persistence in a particular month.
#This output raster ranges from 0 (no snow) to 3 (persistent snow for the whole month)
#and values outside this range should be considered as small errors in pixel overlapping.
#This script needs a particular folder structure. The folder C:\TEMP\Afgh_snow_cover contains 3 subfolders
#input, temp and outputs. The script takes care automatically of the cleaning of temporary data
import arcpy, numpy, os
from arcpy.sa import *
from arcpy import env
#function for finding unique values of a field in a FC
def unique_values_in_table(table, field):
data = arcpy.da.TableToNumPyArray(table, [field])
return numpy.unique(data[field])
#check extensions
try:
if arcpy.CheckExtension("Spatial") == "Available":
arcpy.CheckOutExtension("Spatial")
else:
# Raise a custom exception
#
raise LicenseError
except LicenseError:
print "spatial Analyst license is unavailable"
except:
print arcpy.GetMessages(2)
finally:
# Check in the 3D Analyst extension
#
arcpy.CheckInExtension("Spatial")
# parameters and environment
temp_folder = r"C:\TEMP\Afgh_snow_cover\temp_rasters"
output_folder = r"C:\TEMP\Afgh_snow_cover\output_rasters"
env.workspace = temp_folder
unique_field = "FID"
field_Date = "DATE"
field_Type = "Type"
cellSize = 0.02
fc = r"C:\TEMP\Afgh_snow_cover\input_shapefiles\snow_cover_Dec2007.shp"
stat_output_name = fc[-11:-4] + ".tif"
#print stat_output_name
arcpy.env.extent = "MAXOF"
#find all the uniquesID of the FC
uniqueIDs = unique_values_in_table(fc, "FID")
#make layer for selecting
arcpy.MakeFeatureLayer_management (fc, "lyr")
#uniqueIDs = uniqueIDs[-5:]
totFeatures = len(uniqueIDs)
#for each feature, get the date and the type of snow persistence(type can be high, medium, low and nodata)
for i in uniqueIDs:
SC = arcpy.SearchCursor(fc)
for row in SC:
if row.getValue(unique_field) == i:
datestring = row.getValue(field_Date)
typestring = row.getValue(field_Type)
month = str(datestring.month)
day = str(datestring.day)
year = str(datestring.year)
#format month and year string
if len(month) == 1:
month = '0' + month
if len(day) == 1:
day = '0' + day
#convert snow persistence to numerical value
if typestring == 'high':
typestring2 = 3
if typestring == 'medium':
typestring2 = 2
if typestring == 'low':
typestring2 = 1
if typestring == 'nodata':
typestring2 = 0
#skip the NoData features, and repeat the following for each feature (a feature is a day and a persistence value)
if typestring2 > 0:
#create expression for selecting the feature
expression = ' "FID" = ' + str(i) + ' '
#select the feature
arcpy.SelectLayerByAttribute_management("lyr", "NEW_SELECTION", expression)
#create
#outFeatureClass = os.path.join(temp_folder, ("M_Y_" + str(i)))
#create faeture class name, writing the snow persistence value at the end of the name
outFeatureClass = "Afg_" + str(year) + str(month) + str(day) + "_" + str(typestring2) + '.shp'
#export the feature
arcpy.FeatureClassToFeatureClass_conversion("lyr", temp_folder, outFeatureClass)
print "exported FID " + str(i) + " \ " + str(totFeatures)
#create name of the raster and convert the newly created feature to raster
outRaster = outFeatureClass[4:-4] + ".tif"
arcpy.FeatureToRaster_conversion(outFeatureClass, field_Type, outRaster, cellSize)
#remove the temporary fc
arcpy.Delete_management(outFeatureClass)
del SC, row
#now many rasters are created, representing the snow persistence types of each day.
#list all the rasters created
rasterList = arcpy.ListRasters("*", "All")
print rasterList
#now the rasters have values 1 and 0. the following loop will
#perform CON expressions in order to assign the value of snow persistence
for i in rasterList:
print i + ":"
inRaster = Raster(i)
#set the value of snow persistence, stored in the raster name
value_to_set = i[-5]
inTrueRaster = int(value_to_set)
inFalseConstant = 0
whereClause = "Value > 0"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
print 'Executing CON expression and deleting input'
# Execute Con , in order to assign to each pixel the value of snow persistence
print str(inTrueRaster)
try:
outCon = Con(inRaster, inTrueRaster, inFalseConstant, whereClause)
except:
print 'CON expression failed (probably empty raster!)'
nameoutput = i[:-4] + "_c.tif"
outCon.save(nameoutput)
#delete the temp rasters with values 0 and 1
arcpy.Delete_management(i)
#list the raster with values of snow persistence
rasterList = arcpy.ListRasters("*_c.tif", "All")
#sum the rasters
print "Caclulating SUM"
outCellStats = CellStatistics(rasterList, "SUM", "DATA")
#calculate the number of days (num of rasters/3)
print "Calculating day ratio"
num_of_rasters = len(rasterList)
print 'Num of rasters : ' + str(num_of_rasters)
num_of_days = num_of_rasters / 3
print 'Num of days : ' + str(num_of_days)
#in order to store decimal values, multiplicate the raster by 1000 before dividing
outCellStats = outCellStats * 1000 / num_of_days
#save the output raster
print "saving output " + stat_output_name
stat_output_name = os.path.join(output_folder,stat_output_name)
outCellStats.save(stat_output_name)
#delete the remaining temporary rasters
print "deleting CON rasters"
for i in rasterList:
print "deleting " + i
arcpy.Delete_management(i)
arcpy.Delete_management("lyr")