我需要生成下三角矩阵索引(行和列对)。当对称矩阵变大(超过50K行)时,当前的实现是低效的(记忆明智的)。还有更好的方法吗?
rows <- 2e+01
id <- which(lower.tri(matrix(, rows, rows)) == TRUE, arr.ind=T)
head(id)
# row col
# [1,] 2 1
# [2,] 3 1
# [3,] 4 1
# [4,] 5 1
# [5,] 6 1
# [6,] 7 1
答案 0 :(得分:6)
这是另一种方法:
z <- sequence(rows)
cbind(
row = unlist(lapply(2:rows, function(x) x:rows), use.names = FALSE),
col = rep(z[-length(z)], times = rev(tail(z, -1))-1))
数据较大的基准:
library(microbenchmark)
rows <- 1000
m <- matrix(, rows, rows)
## Your current approach
fun1 <- function() which(lower.tri(m) == TRUE, arr.ind=TRUE)
## An improvement of your current approach
fun2 <- function() which(lower.tri(m), arr.ind = TRUE)
## The approach shared in this answer
fun3 <- function() {
z <- sequence(rows)
cbind(
row = unlist(lapply(2:rows, function(x) x:rows), use.names = FALSE),
col = rep(z[-length(z)], times = rev(tail(z, -1))-1))
}
## Sven's answer
fun4 <- function() {
row <- rev(abs(sequence(seq.int(rows - 1)) - rows) + 1)
col <- rep.int(seq.int(rows - 1), rev(seq.int(rows - 1)))
cbind(row, col)
}
microbenchmark(fun1(), fun2(), fun3(), fun4())
# Unit: milliseconds
# expr min lq median uq max neval
# fun1() 77.813577 85.343356 90.60689 95.71648 130.40059 100
# fun2() 73.812204 82.103600 85.87555 90.59235 138.66547 100
# fun3() 9.016237 9.382506 10.63291 13.20085 55.42137 100
# fun4() 20.591863 24.999702 28.82232 31.90663 65.05169 100
答案 1 :(得分:2)
您的方法非常慢,因为必须创建多个矩阵。您可以使用matrix
创建第一个矩阵。函数lower.tri
在内部创建3个矩阵。结果与TRUE
的比较创建了第五个矩阵。顺便说一句:与TRUE
的比较是不必要的。
以下方法不会创建任何矩阵,而是计算索引:
rows <- 2e+01 # number of rows and columns (20)
x <- rev(abs(sequence(seq.int(rows - 1)) - rows) + 1)
y <- rep.int(seq.int(rows - 1), rev(seq.int(rows - 1)))
idx <- cbind(x, y)
(如果您想要稍微快一些的方法,可以将seq.int(rows - 1)
的结果分配给变量,而不是使用此命令三次。)
与原始解决方案比较:
id <- which(lower.tri(matrix(, rows, rows)) == TRUE, arr.ind=T)
all(id == idx)
# TRUE