根据其文档,System.nanoTime返回 纳秒,因为某些固定但任意的原始时间。但是,在所有x64机器上我尝试了下面的代码,有时间跳转,移动固定原点时间。我的方法可能存在一些缺陷,使用替代方法(此处为currentTimeMillis)获取正确的时间。但是,测量相对时间(持续时间)的主要目的也会受到负面影响。
我遇到了这个问题,试图在将不同的队列与LMAX的Disruptor进行比较时测量延迟,有时我会得到非常负的延迟。在这些情况下,开始和结束时间戳是由不同的线程创建的,但延迟是在这些线程完成后计算的。
我的代码在这里花费时间使用nanoTime,计算currentTimeMillis时间中的固定原点,并比较调用之间的原点。因为我必须在这里提出一个问题:这段代码有什么问题?为什么会发现违反固定来源合同?或者不是吗?
import java.text.*;
/**
* test coherency between {@link System#currentTimeMillis()} and {@link System#nanoTime()}
*/
public class TimeCoherencyTest {
static final int MAX_THREADS = Math.max( 1, Runtime.getRuntime().availableProcessors() - 1);
static final long RUNTIME_NS = 1000000000L * 100;
static final long BIG_OFFSET_MS = 2;
static long startNanos;
static long firstNanoOrigin;
static {
initNanos();
}
private static void initNanos() {
long millisBefore = System.currentTimeMillis();
long millisAfter;
do {
startNanos = System.nanoTime();
millisAfter = System.currentTimeMillis();
} while ( millisAfter != millisBefore);
firstNanoOrigin = ( long) ( millisAfter - ( startNanos / 1e6));
}
static NumberFormat lnf = DecimalFormat.getNumberInstance();
static {
lnf.setMaximumFractionDigits( 3);
lnf.setGroupingUsed( true);
};
static class TimeCoherency {
long firstOrigin;
long lastOrigin;
long numMismatchToLast = 0;
long numMismatchToFirst = 0;
long numMismatchToFirstBig = 0;
long numChecks = 0;
public TimeCoherency( long firstNanoOrigin) {
firstOrigin = firstNanoOrigin;
lastOrigin = firstOrigin;
}
}
public static void main( String[] args) {
Thread[] threads = new Thread[ MAX_THREADS];
for ( int i = 0; i < MAX_THREADS; i++) {
final int fi = i;
final TimeCoherency tc = new TimeCoherency( firstNanoOrigin);
threads[ i] = new Thread() {
@Override
public void run() {
long start = getNow( tc);
long firstOrigin = tc.lastOrigin; // get the first origin for this thread
System.out.println( "Thread " + fi + " started at " + lnf.format( start) + " ns");
long nruns = 0;
while ( getNow( tc) < RUNTIME_NS) {
nruns++;
}
final long runTimeNS = getNow( tc) - start;
final long originDrift = tc.lastOrigin - firstOrigin;
nruns += 3; // account for start and end call and the one that ends the loop
final long skipped = nruns - tc.numChecks;
System.out.println( "Thread " + fi + " finished after " + lnf.format( nruns) + " runs in " + lnf.format( runTimeNS) + " ns (" + lnf.format( ( double) runTimeNS / nruns) + " ns/call) with"
+ "\n\t" + lnf.format( tc.numMismatchToFirst) + " different from first origin (" + lnf.format( 100.0 * tc.numMismatchToFirst / nruns) + "%)"
+ "\n\t" + lnf.format( tc.numMismatchToLast) + " jumps from last origin (" + lnf.format( 100.0 * tc.numMismatchToLast / nruns) + "%)"
+ "\n\t" + lnf.format( tc.numMismatchToFirstBig) + " different from first origin by more than " + BIG_OFFSET_MS + " ms"
+ " (" + lnf.format( 100.0 * tc.numMismatchToFirstBig / nruns) + "%)"
+ "\n\t" + "total drift: " + lnf.format( originDrift) + " ms, " + lnf.format( skipped) + " skipped (" + lnf.format( 100.0 * skipped / nruns) + " %)");
}};
threads[ i].start();
}
try {
for ( Thread thread : threads) {
thread.join();
}
} catch ( InterruptedException ie) {};
}
public static long getNow( TimeCoherency coherency) {
long millisBefore = System.currentTimeMillis();
long now = System.nanoTime();
if ( coherency != null) {
checkOffset( now, millisBefore, coherency);
}
return now - startNanos;
}
private static void checkOffset( long nanoTime, long millisBefore, TimeCoherency tc) {
long millisAfter = System.currentTimeMillis();
if ( millisBefore != millisAfter) {
// disregard since thread may have slept between calls
return;
}
tc.numChecks++;
long nanoMillis = ( long) ( nanoTime / 1e6);
long nanoOrigin = millisAfter - nanoMillis;
long oldOrigin = tc.lastOrigin;
if ( oldOrigin != nanoOrigin) {
tc.lastOrigin = nanoOrigin;
tc.numMismatchToLast++;
}
if ( tc.firstOrigin != nanoOrigin) {
tc.numMismatchToFirst++;
}
if ( Math.abs( tc.firstOrigin - nanoOrigin) > BIG_OFFSET_MS) {
tc.numMismatchToFirstBig ++;
}
}
}
现在我做了一些小改动。基本上,我将nanoTime调用括在两个currentTimeMillis调用之间,以查看该线程是否已被重新调度(这应该超过currentTimeMillis分辨率)。在这种情况下,我忽略了循环周期。实际上,如果我们知道nanoTime足够快(就像像Ivy Bridge这样的新架构),我们可以将currentTimeMillis括在nanoTime中。
现在长> 10ms的跳跃消失了。相反,我们计算每个线程距离第一个原点超过2毫秒的时间。在我测试过的机器上,对于100s的运行时间,调用之间总会有接近200,000次跳转。对于那些我认为currentTimeMillis或nanoTime可能不准确的情况。
答案 0 :(得分:4)
如前所述,每次计算新的来源都意味着你会遇到错误。
// ______ delay _______
// v v
long origin = (long)(System.currentTimeMillis() - System.nanoTime() / 1e6);
// ^
// truncation
如果您修改程序以便计算原点差异,您会发现它非常小。我测量的平均值大约为200ns,这对于延时来说是正确的。
使用乘法而不是除法(这应该没有溢出再过几百年)你还会发现计算的未通过相等性检查的起源数量要大得多,大约为99%。如果错误的原因是由于时间延迟,它们只会在延迟恰好与最后一个相同时通过。
一个更简单的测试是累计经过一段时间后对nanoTime的调用所花费的时间,看看它是否用第一次和最后一次调用结账:
public class SimpleTimeCoherencyTest {
public static void main(String[] args) {
final long anchorNanos = System.nanoTime();
long lastNanoTime = System.nanoTime();
long accumulatedNanos = lastNanoTime - anchorNanos;
long numCallsSinceAnchor = 1L;
for(int i = 0; i < 100; i++) {
TestRun testRun = new TestRun(accumulatedNanos, lastNanoTime);
Thread t = new Thread(testRun);
t.start();
try {
t.join();
} catch(InterruptedException ie) {}
lastNanoTime = testRun.lastNanoTime;
accumulatedNanos = testRun.accumulatedNanos;
numCallsSinceAnchor += testRun.numCallsToNanoTime;
}
System.out.println(numCallsSinceAnchor);
System.out.println(accumulatedNanos);
System.out.println(lastNanoTime - anchorNanos);
}
static class TestRun
implements Runnable {
volatile long accumulatedNanos;
volatile long lastNanoTime;
volatile long numCallsToNanoTime;
TestRun(long acc, long last) {
accumulatedNanos = acc;
lastNanoTime = last;
}
@Override
public void run() {
long lastNanos = lastNanoTime;
long currentNanos;
do {
currentNanos = System.nanoTime();
accumulatedNanos += currentNanos - lastNanos;
lastNanos = currentNanos;
numCallsToNanoTime++;
} while(currentNanos - lastNanoTime <= 100000000L);
lastNanoTime = lastNanos;
}
}
}
该测试确实表明原点是相同的(或至少错误是零均值)。
答案 1 :(得分:0)
据我所知,方法System.currentTimeMillis()
确实有时会跳转,取决于底层操作系统。我有时会观察到这种行为。
因此,您的代码给我的印象是您尝试重复System.nanoTime()
和System.currentTimeMillis()
之间的偏移。您应该通过仅调用System.currentTimeMillis()
一次来尝试观察此偏移,然后才能说System.nanoTimes()
有时会导致跳转。
顺便说一句,我不会假装规范(javadoc描述System.nanoTime()
与某个固定点相关)总是完美实现。您可以查看此discussion,其中多核CPU或CPU频率的变化会对System.nanoTime()
的所需行为产生负面影响。但有一件事是肯定的。 System.currentTimeMillis()
更容易受到任意跳跃的影响。