我正在阅读Max Kuhn和Kjell Johnson撰写的非常好的书“应用预测建模”的例子,遗憾的是我使用train()
函数和其中一个{{1 GermanCredit
包提供的数据集,用于支持向量机的交叉验证:
caret
它抛出了这个错误:
library(AppliedPredictiveModeling)
library(caret)
# preparing the data
data(GermanCredit)
GermanCredit <- GermanCredit[, -nearZeroVar(GermanCredit)]
GermanCredit$CheckingAccountStatus.lt.0 <- NULL
GermanCredit$SavingsAccountBonds.lt.100 <- NULL
GermanCredit$EmploymentDuration.lt.1 <- NULL
GermanCredit$EmploymentDuration.Unemployed <- NULL
GermanCredit$Personal.Male.Married.Widowed <- NULL
GermanCredit$Property.Unknown <- NULL
GermanCredit$Housing.ForFree <- NULL
set.seed(100)
inTrain <- createDataPartition(GermanCredit$Class, p = .8)[[1]]
GermanCreditTrain <- GermanCredit[ inTrain, ]
GermanCreditTest <- GermanCredit[-inTrain, ]
# Grid selection for `sigma` and `cost` tuning parameters:
library(kernlab)
set.seed(231)
sigDist <- sigest(Class ~ ., data = GermanCreditTrain, frac = 1)
svmTuneGrid <- data.frame(.sigma = sigDist[1], .C = 2^(-2:7))
# SVM classification and cross-validation
svmFit <- train(Class ~ .,
data = GermanCreditTrain,
method = "svmRadial",
preProc = c("center", "scale"),
tuneGrid = svmTuneGrid,
trControl = trainControl(method = "repeatedcv", repeats = 5,
classProbs = TRUE))
有时会出现以下错误消息:
Error in comp(expr, env = envir, options = list(suppressUndefined = TRUE)) :
could not find function "makeCenv"
然后我了解到Loading required package: class
Warning: namespace ‘compiler’ is not available and has been replaced
by .GlobalEnv when processing object ‘GermanCredit’
Error in comp(expr, env = envir, options = list(suppressUndefined = TRUE)) :
could not find function "makeCenv"
In addition: Warning message:
executing %dopar% sequentially: no parallel backend registered
在makeCenv()
包中被建议作为并行计算或并行处理的替代方案,但是我不会选择这个包,因为它在Windows平台上不可用, 我猜。还有其他选择
更新
这些错误只出现在代码在doMC
下运行时,默认的R控制台上的情况很好,所以问题是Rstudio的本地问题,我猜。在R控制台(大约8分钟)的时间有点长,不过,我想知道如何根据下面提到的硬件规格加快速度。
我的sessioninfo()输出在这里(Rstudio):
Rstudio IDE
默认R控制台的sessionInfo()输出:
R version 3.0.2 (2013-09-25)
Platform: i386-w64-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] datasets grid splines utils stats graphics grDevices methods
[9] base
other attached packages:
[1] proxy_0.4-10 e1071_1.6-1
[3] class_7.3-9 kernlab_0.9-19
[5] caret_5.17-7 foreach_1.4.1
[7] AppliedPredictiveModeling_1.1-4 CORElearn_0.9.42
[9] rpart_4.1-3 xtable_1.7-1
[11] knitr_1.5 texreg_1.30
[13] pastecs_1.3-15 boot_1.3-9
[15] gridExtra_0.9.1 reshape2_1.2.2
[17] plyr_1.8 scales_0.2.3
[19] ggplot2_0.9.3.1 vcdExtra_0.5-11
[21] gnm_1.0-6 vcd_1.3-1
[23] corrplot_0.73 RColorBrewer_1.0-5
[25] car_2.0-19 Hmisc_3.13-0
[27] Formula_1.1-1 cluster_1.14.4
[29] xlsx_0.5.5 xlsxjars_0.5.0
[31] rJava_0.9-5 lmPerm_1.1-2
[33] coin_1.0-23 survival_2.37-4
[35] GPArotation_2012.3-1 psych_1.3.12
[37] sos_1.3-8 brew_1.0-6
[39] data.table_1.8.10 mice_2.18
[41] nnet_7.3-7 MASS_7.3-29
[43] lattice_0.20-23
loaded via a namespace (and not attached):
[1] codetools_0.2-8 colorspace_1.2-4 dichromat_2.0-0 digest_0.6.4
[5] evaluate_0.5.1 formatR_0.10 gtable_0.1.2 iterators_1.0.6
[9] labeling_0.2 Matrix_1.1-0 modeltools_0.2-21 munsell_0.4.2
[13] mvtnorm_0.9-9996 proto_0.3-10 qvcalc_0.8-8 relimp_1.0-3
[17] stats4_3.0.2 stringr_0.6.2 tcltk_3.0.2 tools_3.0.2
问题:
必须与R version 3.0.2 (2013-09-25)
Platform: i386-w64-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] datasets grDevices grid splines graphics utils stats
[8] methods base
other attached packages:
[1] e1071_1.6-1 class_7.3-9 kernlab_0.9-19 caret_5.17-7
[5] foreach_1.4.1 cluster_1.14.4 lattice_0.20-23 reshape2_1.2.2
[9] plyr_1.8 scales_0.2.3 ggplot2_0.9.3.1 lmPerm_1.1-2
[13] coin_1.0-23 survival_2.37-4 sos_1.3-8 brew_1.0-6
loaded via a namespace (and not attached):
[1] codetools_0.2-8 colorspace_1.2-4 compiler_3.0.2 dichromat_2.0-0
[5] digest_0.6.3 gtable_0.1.2 iterators_1.0.6 labeling_0.2
[9] MASS_7.3-29 modeltools_0.2-21 munsell_0.4.2 mvtnorm_0.9-9996
[13] proto_0.3-10 RColorBrewer_1.0-5 stats4_3.0.2 stringr_0.6.2
[17] tools_3.0.2
进行交互,因为它在默认的R控制台中运行良好,基于默认R控制台和Rstudio的两个sessionInfo()输出,差异为Rstudio
包。奇怪的是,这个pkg在CRAN中找不到,我在这里找到了一个注释:
http://www.inside-r.org/r-doc/compiler/compile
当我在Rstudio中这样做时,说load(编译器)就足够了:这个错误消息是不可能的:
错误:包“编译器”是在R 3.0.0之前构建的:请重新安装
更新
它终于从复制和放大后的Rstudio开始工作了。将编译器包库从默认的R lib路径粘贴到Rstudio lib路径,但是时间太长(大约8分钟),我会发布一个单独的并行处理问题给出下面的硬件和windows,如果这会有帮助更快找到答案。
compiler
功能进行并行处理?你能不能为此发出R代码,我将非常感激。答案 0 :(得分:1)
插入符号代码库完全独立于doMC或任何其他“do”包。我没有在这里测试的Windows系统,但我99%肯定这不是一个可重现的问题。该软件包每晚在几个地方(例如R-Forge)和3-4个不同的操作系统(包括Windows)进行测试。我从来没有见过这个问题,即使我已经在专门使用Windows的大量受众上教授课程。
我的猜测是你不小心在某个地方调用了doMC函数(即使它没有列在你的sessionInfo中)。
如果其他人可以尝试重现此错误,将会很有帮助。
谢谢,
最高
答案 1 :(得分:1)
升级R
sudo su
echo "deb http://www.stats.bris.ac.uk/R/bin/linux/ubuntu precise/" >> /etc/apt/sources.list
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E084DAB9
apt-get update
apt-get upgrade