我无法绘制以下数据:(精确回忆曲线)

时间:2013-12-20 14:36:38

标签: python statistics precision-recall

您好我正在尝试使用以下数据绘制Recall-Precision曲线:

      Recall    Precision
0.88196 0.467257
0.898501    0.468447
0.89899 0.470659
0.900789    0.471653
0.900922    0.472038
0.901012    0.472359
0.901345    0.480144
0.901695    0.482353
0.902825    0.482717
0.903261    0.483125
0.905152    0.483621
0.905575    0.485088
0.905682    0.486339
0.906109    0.488117
0.906466    0.488459
0.90724 0.488587
0.908989    0.488875
0.909941    0.489362
0.910125    0.489493
0.910314    0.490196
0.910989    0.49022
0.91106 0.490786
0.911137    0.496624
0.91129 0.496891
0.911392    0.497301
0.911392    0.499379
0.911422    0.5
0.911452    0.503783
0.911525    0.515829

源代码:

import random
import pylab as pl
from sklearn import svm, datasets
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc

##Load Recall
fname = "recall.txt"
fname1 = "precision.txt"

recall = []
precision = []

with open(fname) as inf:
    for line in inf:
        recall.append(float(line))

with open(fname1) as inf:
    for line in inf:
        precision.append(float(line))

area = auc(recall, precision)
print("Area Under Curve: %0.2f" % area)

pl.clf()
pl.plot(recall, precision, label='Precision-Recall curve')
pl.xlabel('Recall')
pl.ylabel('Precision')
pl.ylim([0.0, 1.05])
pl.xlim([0.0, 1.0])
pl.title('Precision-Recall example: AUC=%0.2f' % area)
pl.legend(loc="lower left")
pl.show()

我得到AUC = 0.01以下的区域是正常的吗?

enter image description here

1 个答案:

答案 0 :(得分:1)

这似乎是正确的答案。

使用numpy.trapz(precission, recall)我得到AUC = 0.014036223712000031