这是我正在做的事情:
$ python
Python 2.7.6 (v2.7.6:3a1db0d2747e, Nov 10 2013, 00:42:54)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
>>> import statsmodels.api as sm
>>> statsmodels.__version__
'0.5.0'
>>> import numpy
>>> y = numpy.array([1,2,3,4,5,6,7,8,9])
>>> X = numpy.array([1,1,2,2,3,3,4,4,5])
>>> res_ols = sm.OLS(y, X).fit()
>>> res_ols.params
array([ 1.82352941])
我原本期望有两个元素的数组?!? 截距和斜率系数?
答案 0 :(得分:41)
试试这个:
X = sm.add_constant(X)
sm.OLS(y,X)
一样
默认情况下不包括拦截,应由用户添加
答案 1 :(得分:6)
为了完成,这有效:
>>> import numpy
>>> import statsmodels.api as sm
>>> y = numpy.array([1,2,3,4,5,6,7,8,9])
>>> X = numpy.array([1,1,2,2,3,3,4,4,5])
>>> X = sm.add_constant(X)
>>> res_ols = sm.OLS(y, X).fit()
>>> res_ols.params
array([-0.35714286, 1.92857143])
它确实给了我一个不同的斜率系数,但我想我们现在的数字有一个截距。
答案 2 :(得分:1)
我正在运行0.6.1,看起来“add_constant”函数已被移入statsmodels.tools模块。这是我运行的工作:
#include <stdio.h>
int wordlength();
int main() {
printf("%d", wordlength()); // prints 4195424 but
// if I uncomment the code below
// it then prints 32 like I want
// int count;
// unsigned int n = ~0;
//
// while( n != 0) {
// n = n >> 1;
// count++;
// }
// printf("\n%d", count); // prints 32 as expected
return 0;
}
int wordlength() {
int count;
unsigned int n = ~0;
while( n != 0) {
n = n >> 1;
count++;
}
return count;
}
答案 3 :(得分:1)
尝试一下,它对我有用:
import statsmodels.formula.api as sm
from statsmodels.api import add_constant
X_train = add_constant(X_train)
X_test = add_constant(X_test)
model = sm.OLS(y_train,X_train)
results = model.fit()
y_pred=results.predict(X_test)
results.params
答案 4 :(得分:0)
我确实添加了代码X = sm.add_constant(X)
,但是python没有返回拦截值,因此我决定使用一些代数自己在代码中完成此操作:
此代码计算了35个样本,7个特征以及我作为等式添加为特征的一个截距值的回归:
import statsmodels.api as sm
from sklearn import datasets ## imports datasets from scikit-learn
import numpy as np
import pandas as pd
x=np.empty((35,8)) # (numSamples, oneIntercept + numFeatures))
feature_names = np.empty((8,))
y = np.empty((35,))
dbfv = open("dataset.csv").readlines()
interceptConstant = 1;
i = 0
# reading data and writing in numpy arrays
while i<len(dbfv):
cells = dbfv[i].split(",")
j = 0
x[i][j] = interceptConstant
feature_names[j] = str(j)
while j<len(cells)-1:
x[i][j+1] = cells[j]
feature_names[j+1] = str(j+1)
j += 1
y[i] = cells[len(cells)-1]
i += 1
# creating dataframes
df = pd.DataFrame(x, columns=feature_names)
target = pd.DataFrame(y, columns=["TARGET"])
X = df
y = target["TARGET"]
model = sm.OLS(y, X).fit()
print(model.params)
# predictions = model.predict(X) # make the predictions by the model
# Print out the statistics
print(model.summary())