在opencv中检测半圆

时间:2013-12-20 07:42:08

标签: opencv geometry hough-transform

我正在尝试检测图像中的完整圆圈和半圆。enter image description here

我遵循以下提到的程序: 过程图像(包括Canny边缘检测) 查找轮廓并在空图像上绘制它们,以便我可以消除不需要的组件。 (处理过的图像正是我想要的。) 使用HoughCircles检测圆圈。这就是我得到的。

enter image description here

我尝试改变HoughCircles中的参数,但结果不一致,因为它根据光线和图像中圆圈的位置而变化。 我根据它的大小接受或拒绝一个圆圈。所以结果是不可接受的。此外,我还有一长串“可接受的”圈子,所以我需要在HoughCircle参数中留出一些余量。 至于完整的圆圈,很容易 - 我可以简单地找到轮廓的“圆度”。问题是半圈!

请在hough变换enter image description here

之前找到已编辑的图像

5 个答案:

答案 0 :(得分:34)

直接在图片上使用houghCircle,不要先提取边缘。 然后测试每个检测到的圆圈,图像中确实存在多少百分比:

int main()
{
    cv::Mat color = cv::imread("../houghCircles.png");
    cv::namedWindow("input"); cv::imshow("input", color);

    cv::Mat canny;

    cv::Mat gray;
    /// Convert it to gray
    cv::cvtColor( color, gray, CV_BGR2GRAY );

    // compute canny (don't blur with that image quality!!)
    cv::Canny(gray, canny, 200,20);
    cv::namedWindow("canny2"); cv::imshow("canny2", canny>0);

    std::vector<cv::Vec3f> circles;

    /// Apply the Hough Transform to find the circles
    cv::HoughCircles( gray, circles, CV_HOUGH_GRADIENT, 1, 60, 200, 20, 0, 0 );

    /// Draw the circles detected
    for( size_t i = 0; i < circles.size(); i++ ) 
    {
        Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
        int radius = cvRound(circles[i][2]);
        cv::circle( color, center, 3, Scalar(0,255,255), -1);
        cv::circle( color, center, radius, Scalar(0,0,255), 1 );
    }

    //compute distance transform:
    cv::Mat dt;
    cv::distanceTransform(255-(canny>0), dt, CV_DIST_L2 ,3);
    cv::namedWindow("distance transform"); cv::imshow("distance transform", dt/255.0f);

    // test for semi-circles:
    float minInlierDist = 2.0f;
    for( size_t i = 0; i < circles.size(); i++ ) 
    {
        // test inlier percentage:
        // sample the circle and check for distance to the next edge
        unsigned int counter = 0;
        unsigned int inlier = 0;

        cv::Point2f center((circles[i][0]), (circles[i][1]));
        float radius = (circles[i][2]);

        // maximal distance of inlier might depend on the size of the circle
        float maxInlierDist = radius/25.0f;
        if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;

        //TODO: maybe paramter incrementation might depend on circle size!
        for(float t =0; t<2*3.14159265359f; t+= 0.1f) 
        {
            counter++;
            float cX = radius*cos(t) + circles[i][0];
            float cY = radius*sin(t) + circles[i][1];

            if(dt.at<float>(cY,cX) < maxInlierDist) 
            {
                inlier++;
                cv::circle(color, cv::Point2i(cX,cY),3, cv::Scalar(0,255,0));
            } 
           else
                cv::circle(color, cv::Point2i(cX,cY),3, cv::Scalar(255,0,0));
        }
        std::cout << 100.0f*(float)inlier/(float)counter << " % of a circle with radius " << radius << " detected" << std::endl;
    }

    cv::namedWindow("output"); cv::imshow("output", color);
    cv::imwrite("houghLinesComputed.png", color);

    cv::waitKey(-1);
    return 0;
}

对于此输入:

enter image description here

它给出了这个输出:

enter image description here

红圈是霍夫的结果。

圆圈上的绿色采样点是内点。

蓝点是异常值。

控制台输出:

100 % of a circle with radius 27.5045 detected
100 % of a circle with radius 25.3476 detected
58.7302 % of a circle with radius 194.639 detected
50.7937 % of a circle with radius 23.1625 detected
79.3651 % of a circle with radius 7.64853 detected

如果您想测试RANSAC而不是Hough,请查看this

答案 1 :(得分:10)

这是另一种方法,一个简单的RANSAC版本(为提高速度而进行的大量优化),适用于Edge Image。

该方法循环这些步骤直到取消

  1. 随机选择3个边缘像素
  2. 从中估计圆圈(3个点足以识别圆圈)
  3. 验证或伪造它确实是一个圆圈:计算给定边缘表示圆圈的百分比
  4. 如果验证了圆圈,请从输入/ egdes中删除圆圈

    int main()
    {
    //RANSAC
    
    //load edge image
    cv::Mat color = cv::imread("../circleDetectionEdges.png");
    
    // convert to grayscale
    cv::Mat gray;
    cv::cvtColor(color, gray, CV_RGB2GRAY);
    
    // get binary image
    cv::Mat mask = gray > 0;
    //erode the edges to obtain sharp/thin edges (undo the blur?)
    cv::erode(mask, mask, cv::Mat());
    
    std::vector<cv::Point2f> edgePositions;
    edgePositions = getPointPositions(mask);
    
    // create distance transform to efficiently evaluate distance to nearest edge
    cv::Mat dt;
    cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
    
    //TODO: maybe seed random variable for real random numbers.
    
    unsigned int nIterations = 0;
    
    char quitKey = 'q';
    std::cout << "press " << quitKey << " to stop" << std::endl;
    while(cv::waitKey(-1) != quitKey)
    {
        //RANSAC: randomly choose 3 point and create a circle:
        //TODO: choose randomly but more intelligent, 
        //so that it is more likely to choose three points of a circle. 
        //For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
        unsigned int idx1 = rand()%edgePositions.size();
        unsigned int idx2 = rand()%edgePositions.size();
        unsigned int idx3 = rand()%edgePositions.size();
    
        // we need 3 different samples:
        if(idx1 == idx2) continue;
        if(idx1 == idx3) continue;
        if(idx3 == idx2) continue;
    
        // create circle from 3 points:
        cv::Point2f center; float radius;
        getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
    
        float minCirclePercentage = 0.4f;
    
        // inlier set unused at the moment but could be used to approximate a (more robust) circle from alle inlier
        std::vector<cv::Point2f> inlierSet;
    
        //verify or falsify the circle by inlier counting:
        float cPerc = verifyCircle(dt,center,radius, inlierSet);
    
        if(cPerc >= minCirclePercentage)
        {
            std::cout << "accepted circle with " << cPerc*100.0f << " % inlier" << std::endl;
            // first step would be to approximate the circle iteratively from ALL INLIER to obtain a better circle center
            // but that's a TODO
    
            std::cout << "circle: " << "center: " << center << " radius: " << radius << std::endl;
            cv::circle(color, center,radius, cv::Scalar(255,255,0),1);
    
            // accept circle => remove it from the edge list
            cv::circle(mask,center,radius,cv::Scalar(0),10);
    
            //update edge positions and distance transform
            edgePositions = getPointPositions(mask);
            cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
        }
    
        cv::Mat tmp;
        mask.copyTo(tmp);
    
        // prevent cases where no fircle could be extracted (because three points collinear or sth.)
        // filter NaN values
        if((center.x == center.x)&&(center.y == center.y)&&(radius == radius))
        {
            cv::circle(tmp,center,radius,cv::Scalar(255));
        }
        else
        {
            std::cout << "circle illegal" << std::endl;
        }
    
        ++nIterations;
        cv::namedWindow("RANSAC"); cv::imshow("RANSAC", tmp);
    }
    
    std::cout << nIterations <<  " iterations performed" << std::endl;
    
    
    cv::namedWindow("edges"); cv::imshow("edges", mask);
    cv::namedWindow("color"); cv::imshow("color", color);
    
    cv::imwrite("detectedCircles.png", color);
    cv::waitKey(-1);
    return 0;
    }
    
    
    float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
    {
     unsigned int counter = 0;
     unsigned int inlier = 0;
     float minInlierDist = 2.0f;
     float maxInlierDistMax = 100.0f;
     float maxInlierDist = radius/25.0f;
     if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
     if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
    
     // choose samples along the circle and count inlier percentage
     for(float t =0; t<2*3.14159265359f; t+= 0.05f)
     {
         counter++;
         float cX = radius*cos(t) + center.x;
         float cY = radius*sin(t) + center.y;
    
         if(cX < dt.cols)
         if(cX >= 0)
         if(cY < dt.rows)
         if(cY >= 0)
         if(dt.at<float>(cY,cX) < maxInlierDist)
         {
            inlier++;
            inlierSet.push_back(cv::Point2f(cX,cY));
         }
     }
    
     return (float)inlier/float(counter);
    }
    
    
    inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
    {
      float x1 = p1.x;
      float x2 = p2.x;
      float x3 = p3.x;
    
      float y1 = p1.y;
      float y2 = p2.y;
      float y3 = p3.y;
    
      // PLEASE CHECK FOR TYPOS IN THE FORMULA :)
      center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
      center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
    
      center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
      center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
    
      radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
    }
    
    
    
    std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
    {
     std::vector<cv::Point2f> pointPositions;
    
     for(unsigned int y=0; y<binaryImage.rows; ++y)
     {
         //unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
         for(unsigned int x=0; x<binaryImage.cols; ++x)
         {
             //if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
             if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
         }
     }
    
     return pointPositions;
    }
    
  5. 输入:

    enter image description here

    输出:

    enter image description here

    控制台输出:

        press q to stop
        accepted circle with 50 % inlier
        circle: center: [358.511, 211.163] radius: 193.849
        accepted circle with 85.7143 % inlier
        circle: center: [45.2273, 171.591] radius: 24.6215
        accepted circle with 100 % inlier
        circle: center: [257.066, 197.066] radius: 27.819
        circle illegal
        30 iterations performed`
    

    优化应包括:

    1. 使用所有inlier来设置更好的圆圈

    2. 在每个检测到的圆圈之后不计算距离变换(它非常昂贵)。直接从点/边集设置inlier,并从该列表中删除inlier边。

    3. 如果图像中有许多小圆圈(和/或很多噪点),则不可能随机打3个边缘像素或圆圈。 =&GT;首先尝试轮廓检测并检测每个轮廓的圆圈。之后尝试检测图像中剩余的所有“其他”圆圈。

    4. 很多其他的东西

答案 2 :(得分:0)

霍夫算法检测到的半圆最可能是正确的。这里的问题可能是,除非您严格控制场景的几何形状,即相机相对于目标的精确位置,以便图像轴垂直于目标平面,您将获得省略号而不是投影在图像上的圆圈平面。更不用说由光学系统引起的扭曲,这进一步使几何图形退化。如果你在这里依赖精确度,我会推荐camera calibration

答案 3 :(得分:0)

你最好尝试使用不同的内核进行高斯模糊。这会对你有帮助

GaussianBlur( src_gray, src_gray, Size(11, 11), 5,5);

所以改变size(i,i),j,j)

答案 4 :(得分:0)

我知道它有点晚了,但我使用了不同的方法,这更容易。 从cv2.HoughCircles(...)得到圆心和直径(x,y,r)。因此,我只需浏览圆圈的所有中心点,然后检查它们是否远离图像边缘而不是直径。

这是我的代码:

        height, width = img.shape[:2]

        #test top edge
        up = (circles[0, :, 0] - circles[0, :, 2]) >= 0

        #test left edge
        left = (circles[0, :, 1] - circles[0, :, 2]) >= 0

        #test right edge
        right = (circles[0, :, 0] + circles[0, :, 2]) <= width

        #test bottom edge
        down = (circles[0, :, 1] + circles[0, :, 2]) <= height

        circles = circles[:, (up & down & right & left), :]