好的,所以我在Andrew Ng's machine learning course on coursera的中间,并希望调整作为任务4的一部分完成的神经网络。
特别是,我作为任务的一部分正确完成的神经网络如下:
g(z) = 1/(1+e^(-z))
其中L=number of layers
,s_l = number of units in layer l
,m = number of training examples
,K = number of output units
现在我想调整练习,以便有一个连续的输出单元可以在[0,1]之间取任何值,我正在尝试找出需要改变的东西,到目前为止我已经
a_3
是从前向传播确定的输出单位的值。我确信其他必须改变,因为梯度检查方法显示由反向传播确定的梯度,并且数值近似不再匹配。我没有改变sigmoid梯度;它保留在f(z)*(1-f(z))
,其中f(z)
是sigmoid函数1/(1+e^(-z)))
,我也没有更新导数公式的数值近似值;只需(J(theta+e) - J(theta-e))/(2e)
。
任何人都可以建议需要采取哪些其他措施吗?
在Matlab中编码如下:
% FORWARD PROPAGATION
% input layer
a1 = [ones(m,1),X];
% hidden layer
z2 = a1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(m,1),a2];
% output layer
z3 = a2*Theta2';
a3 = sigmoid(z3);
% BACKWARD PROPAGATION
delta3 = a3 - y;
delta2 = delta3*Theta2(:,2:end).*sigmoidGradient(z2);
Theta1_grad = (delta2'*a1)/m;
Theta2_grad = (delta3'*a2)/m;
% COST FUNCTION
J = 1/(2 * m) * sum( (a3-y).^2 );
% Implement regularization with the cost function and gradients.
Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + Theta1(:,2:end)*lambda/m;
Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + Theta2(:,2:end)*lambda/m;
J = J + lambda/(2*m)*( sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2)));
我已经意识到这个问题类似于@Mikhail Erofeev on StackOverflow提出的问题,但是在这种情况下我希望连续变量介于0和1之间,因此使用sigmoid函数。
答案 0 :(得分:1)
首先,您的成本函数应为:
J = 1/m * sum( (a3-y).^2 );
我认为您的Theta2_grad = (delta3'*a2)/m;
预计会与更改为delta3 = 1/2 * (a3 - y);
后的数字近似值相匹配。
查看此slide了解详情。
修改强>
如果我们的代码之间存在一些细微的差异,我会在下面粘贴我的代码供您参考。代码已经与数值逼近函数checkNNGradients(lambda);
进行了比较,相对差异小于1e-4
(不符合Dr.Andrew Ng的1e-11
要求)
function [J grad] = nnCostFunctionRegression(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
X = [ones(m, 1) X];
z1 = sigmoid(X * Theta1');
zs = z1;
z1 = [ones(m, 1) z1];
z2 = z1 * Theta2';
ht = sigmoid(z2);
y_recode = zeros(length(y),num_labels);
for i=1:length(y)
y_recode(i,y(i))=1;
end
y = y_recode;
regularization=lambda/2/m*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));
J=1/(m)*sum(sum((ht - y).^2))+regularization;
delta_3 = 1/2*(ht - y);
delta_2 = delta_3 * Theta2(:,2:end) .* sigmoidGradient(X * Theta1');
delta_cap2 = delta_3' * z1;
delta_cap1 = delta_2' * X;
Theta1_grad = ((1/m) * delta_cap1)+ ((lambda/m) * (Theta1));
Theta2_grad = ((1/m) * delta_cap2)+ ((lambda/m) * (Theta2));
Theta1_grad(:,1) = Theta1_grad(:,1)-((lambda/m) * (Theta1(:,1)));
Theta2_grad(:,1) = Theta2_grad(:,1)-((lambda/m) * (Theta2(:,1)));
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
答案 1 :(得分:0)
如果您想要连续输出,请在计算目标值时尽量不要使用sigmoid激活。
a1 = [ones(m, 1) X];
a2 = sigmoid(X * Theta1');
a2 = [ones(m, 1) z1];
a3 = z1 * Theta2';
ht = a3;
在nnCostFunction中使用之前标准化输入。其他一切都是一样的。