我试图通过DirectX9 SDK中提供的各种样本分析alpha混合,我成功分析了顶点alpha混合,但是当我尝试进行纹理alpha混合时,它在构建解决方案时显示黑屏..从{{3 }}
这是我的分析代码,
//-----------------------------------------------------------------------------
// File: Matrices.cpp
//
// Desc: Now that we know how to create a device and render some 2D vertices,
// this tutorial goes the next step and renders 3D geometry. To deal with
// 3D geometry we need to introduce the use of 4x4 Matrices to transform
// the geometry with translations, rotations, scaling, and setting up our
// camera.
//
// Geometry is defined in model space. We can move it (translation),
// rotate it (rotation), or stretch it (scaling) using a world transform.
// The geometry is then said to be in world space. Next, we need to
// position the camera, or eye point, somewhere to look at the geometry.
// Another transform, via the view matrix, is used, to position and
// rotate our view. With the geometry then in view space, our last
// transform is the projection transform, which "projects" the 3D scene
// into our 2D viewport.
//
// Note that in this tutorial, we are introducing the use of D3DX, which
// is a set of helper utilities for D3D. In this case, we are using some
// of D3DX's useful matrix initialization functions. To use D3DX, simply
// include <d3dx9.h> and link with d3dx9.lib.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//-----------------------------------------------------------------------------
#include <Windows.h>
#include <mmsystem.h>
#include <d3dx9.h>
#pragma warning( disable : 4996 ) // disable deprecated warning
#include <strsafe.h>
#pragma warning( default : 4996 )
//-----------------------------------------------------------------------------
// Global variables
//-----------------------------------------------------------------------------
LPDIRECT3D9 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE9 g_pd3dDevice = NULL; // Our rendering device
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL; // Buffer to hold vertices
// A structure for our custom vertex type
struct CUSTOMVERTEX
{
FLOAT x, y, z; // The untransformed, 3D position for the vertex
DWORD color; // The vertex color
};
// Our custom FVF, which describes our custom vertex structure
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX0)
LPDIRECT3DTEXTURE9 g_pTexture;
DWORD* m_pRGBAData;
DWORD m_dwWidth;
DWORD m_dwHeight;
DWORD m_dwStage;
//-----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
//-----------------------------------------------------------------------------
HRESULT InitD3D( HWND hWnd )
{
// Create the D3D object.
if( NULL == ( g_pD3D = Direct3DCreate9( D3D_SDK_VERSION ) ) )
return E_FAIL;
// Set up the structure used to create the D3DDevice
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( &d3dpp, sizeof( d3dpp ) );
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Create the D3DDevice
if( FAILED( g_pD3D->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &g_pd3dDevice ) ) )
{
return E_FAIL;
}
// Turn off culling, so we see the front and back of the triangle
g_pd3dDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
// Turn off D3D lighting, since we are providing our own vertex colors
g_pd3dDevice->SetRenderState( D3DRS_LIGHTING, FALSE );
g_pd3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE); // turn on the z-buffer
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: InitGeometry()
// Desc: Creates the scene geometry
//-----------------------------------------------------------------------------
HRESULT InitGeometry()
{
// Initialize three vertices for rendering a triangle
CUSTOMVERTEX g_Vertices[] =
{
{ -1.0f, -1.0f, 0.0f, D3DCOLOR_ARGB(128,0,0, 255), }, //first triangle
{ 1.0f, -1.0f, 0.0f, D3DCOLOR_ARGB(128,0, 0, 255), },
{ 0.0f, 1.0f, 0.0f, D3DCOLOR_ARGB(128,0, 0, 255), },
{ -0.5f,-0.5f, 0.5f, D3DCOLOR_ARGB(255,0, 255, 0), }, //second triangle
{ 1.0f,-1.0f, 0.5f, D3DCOLOR_ARGB(255,0, 255, 0), },
{ 0.0f, 0.5f, 0.5f, D3DCOLOR_ARGB(255,0, 255, 0), },
};
// Create the vertex buffer.
if( FAILED( g_pd3dDevice->CreateVertexBuffer( 11 * sizeof( CUSTOMVERTEX ),
0, D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, &g_pVB, NULL ) ) )
{
return E_FAIL;
}
// Fill the vertex buffer.
VOID* pVertices;
if( FAILED( g_pVB->Lock( 0, sizeof( g_Vertices ), ( void** )&pVertices, 0 ) ) )
return E_FAIL;
memcpy( pVertices, g_Vertices, sizeof( g_Vertices ) );
g_pVB->Unlock();
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
//-----------------------------------------------------------------------------
VOID Cleanup()
{
if( g_pVB != NULL )
g_pVB->Release();
if( g_pd3dDevice != NULL )
g_pd3dDevice->Release();
if( g_pD3D != NULL )
g_pD3D->Release();
}
//-----------------------------------------------------------------------------
// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform Matrices.
//-----------------------------------------------------------------------------
VOID SetupMatrices()
{
// For our world matrix, we will just rotate the object about the y-axis.
D3DXMATRIXA16 matWorld;
// Set up the rotation matrix to generate 1 full rotation (2*PI radians)
// every 1000 ms. To avoid the loss of precision inherent in very high
// floating point numbers, the system time is modulated by the rotation
// period before conversion to a radian angle.
UINT iTime = timeGetTime() % 10000;
FLOAT fAngle = iTime * ( 2.0f * D3DX_PI ) / 10000.0f;
D3DXMatrixRotationY( &matWorld, fAngle );
g_pd3dDevice->SetTransform( D3DTS_WORLD, &matWorld );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXVECTOR3 vEyePt( 0.0f, 3.0f,-5.0f );
D3DXVECTOR3 vLookatPt( 0.0f, 0.0f, 0.0f );
D3DXVECTOR3 vUpVec( 0.0f, 1.0f, 0.0f );
D3DXMATRIXA16 matView;
D3DXMatrixLookAtLH( &matView, &vEyePt, &vLookatPt, &vUpVec );
g_pd3dDevice->SetTransform( D3DTS_VIEW, &matView );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIXA16 matProj;
D3DXMatrixPerspectiveFovLH( &matProj, D3DX_PI / 4, 1.0f, 1.0f, 100.0f );
g_pd3dDevice->SetTransform( D3DTS_PROJECTION, &matProj );
}
//-----------------------------------------------------------------------------
// Name: Render()
// Desc: Draws the scene
//-----------------------------------------------------------------------------
VOID Render()
{
// Clear the backbuffer to a black color
g_pd3dDevice->Clear( 0, NULL, D3DCLEAR_TARGET, D3DCOLOR_ARGB( 255, 0, 0, 0 ), 1.0f, 0 );
g_pd3dDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(0, 0, 0), 1.0f, 0);
// Begin the scene
if( SUCCEEDED( g_pd3dDevice->BeginScene() ) )
{
// Setup the world, view, and projection Matrices
SetupMatrices();
// Create an alpha texture
D3DXCreateTexture(g_pd3dDevice, 128, 128, 0,D3DUSAGE_RENDERTARGET,
D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &g_pTexture);
// Initialize the alpha channel
int yGrad, xGrad;
D3DLOCKED_RECT lockedRect;
if(SUCCEEDED(g_pTexture->LockRect(0, &lockedRect, NULL, D3DLOCK_DISCARD )))
{
m_pRGBAData = new DWORD[128*128];
if( m_pRGBAData != NULL )
{
for( DWORD y=0; y < m_dwHeight; y++ )
{
DWORD dwOffset = y*m_dwWidth;
yGrad = (int)(((float)y/(float)m_dwWidth) * 255.0f);
for( DWORD x=0; x < m_dwWidth; x )
{
xGrad = (int)(((float)x/(float)m_dwWidth) * 255.0f);
DWORD b = (DWORD)(xGrad + (255 - yGrad))/2 & 0xFF;
DWORD g = (DWORD)((255 - xGrad) + yGrad)/2 & 0xFF;
DWORD r = (DWORD)(xGrad + yGrad)/2 & 0xFF;
DWORD a = (DWORD)(xGrad + yGrad)/2 & 0xFF;
//lockedRect.pBits[dwOffset+x] =(unsigned char*)(a<<24L)+(r<<16L)+(g<<8L)+(b);
unsigned char* pBytes = (unsigned char*)lockedRect.pBits; // lr = D3DLOCKED_RECT you get from locking the texture
unsigned int offset = y *lockedRect.Pitch + x * 4; // as explained in earlier post
pBytes[offset] = a; // alpha, red, green, blue are unsigned chars 0...255
pBytes[offset + 1] = r;
pBytes[offset + 2] = g;
pBytes[offset + 3] = b;
x++;
}
}
}
g_pTexture->UnlockRect((UINT)&lockedRect);
}
//Render the vertex buffer contents
//g_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
//g_pd3dDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_MAX);
// Assign texture
g_pd3dDevice->SetTexture(0, g_pTexture);
// Texture stage states
g_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
g_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
g_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
g_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
g_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
g_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
g_pd3dDevice->SetStreamSource( 0, g_pVB, 0, sizeof( CUSTOMVERTEX ) );
g_pd3dDevice->SetFVF( D3DFVF_CUSTOMVERTEX );
g_pd3dDevice->DrawPrimitive( D3DPT_TRIANGLELIST,2 ,11 );
// End the scene
g_pd3dDevice->EndScene();
}
// Present the backbuffer contents to the display
g_pd3dDevice->Present( NULL, NULL, NULL, NULL );
}
//-----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
//-----------------------------------------------------------------------------
LRESULT WINAPI MsgProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch( msg )
{
case WM_DESTROY:
Cleanup();
PostQuitMessage( 0 );
return 0;
}
return DefWindowProc( hWnd, msg, wParam, lParam );
}
//-----------------------------------------------------------------------------
// Name: WinMain()
// Desc: The application's entry point
//-----------------------------------------------------------------------------
INT WINAPI wWinMain( HINSTANCE hInst, HINSTANCE, LPWSTR, INT )
{
UNREFERENCED_PARAMETER( hInst );
// Register the window class
WNDCLASSEX wc =
{
sizeof( WNDCLASSEX ), CS_CLASSDC, MsgProc, 0L, 0L,
GetModuleHandle( NULL ), NULL, NULL, NULL, NULL,
L"D3D Tutorial", NULL
};
RegisterClassEx( &wc );
// Create the application's window
HWND hWnd = CreateWindow( L"D3D Tutorial", L"D3D Tutorial 03: Matrices",
WS_OVERLAPPEDWINDOW, 100, 100, 256, 256,
NULL, NULL, wc.hInstance, NULL );
// Initialize Direct3D
if( SUCCEEDED( InitD3D( hWnd ) ) )
{
// Create the scene geometry
if( SUCCEEDED( InitGeometry() ) )
{
// Show the window
ShowWindow( hWnd, SW_SHOWDEFAULT );
UpdateWindow( hWnd );
// Enter the message loop
MSG msg;
ZeroMemory( &msg, sizeof( msg ) );
while( msg.message != WM_QUIT )
{
if( PeekMessage( &msg, NULL, 0U, 0U, PM_REMOVE ) )
{
TranslateMessage( &msg );
DispatchMessage( &msg );
}
else
Render();
}
}
}
UnregisterClass( L"D3D Tutorial", wc.hInstance );
return 0;
}
请提供解决方案。