我有以下数据框
dat <- data.frame(a = c(0,0,2,3), b= c(1,0,0,0), c=c(0,0,1,3))
打印哪些:
> dat
a b c
1 0 1 0
2 0 0 0
3 2 0 1
4 3 0 3
我想删除所有列都为零的行, 导致这个:
a b c
1 0 1 0
3 2 0 1
4 3 0 3
我怎样才能做到这一点?
我尝试了但失败了:
> row_sub = apply(dat, 1, function(row) all(row !=0 ))
> dat[row_sub,]
[1] a b c
<0 rows> (or 0-length row.names)
答案 0 :(得分:5)
您可以使用(1)
dat[as.logical(rowSums(dat != 0)), ]
这适用于正值和负值。
大型数据集的另一种甚至更快的可能性是(2)
dat[rowSums(!as.matrix(dat)) < ncol(dat), ]
短数据帧和长数据帧的更快方法是使用矩阵乘法(3):
dat[as.logical(abs(as.matrix(dat)) %*% rep(1L, ncol(dat))), ]
一些基准:
# the original dataset
dat <- data.frame(a = c(0,0,2,3), b= c(1,0,0,0), c=c(0,0,1,3))
Codoremifa <- function() dat[rowSums(abs(dat)) != 0,]
Marco <- function() dat[!apply(dat, 1, function(x) all(x == 0)), ]
Sven <- function() dat[as.logical(rowSums(dat != 0)), ]
Sven_2 <- function() dat[rowSums(!as.matrix(dat)) < ncol(dat), ]
Sven_3 <- function() dat[as.logical(abs(as.matrix(dat)) %*% rep(1L,ncol(dat))), ]
library(microbenchmark)
microbenchmark(Codoremifa(), Marco(), Sven(), Sven_2(), Sven_3())
# Unit: microseconds
# expr min lq median uq max neval
# Codoremifa() 267.772 273.2145 277.1015 284.0995 1190.197 100
# Marco() 192.509 198.4190 201.2175 208.9925 265.594 100
# Sven() 143.372 147.7260 150.0585 153.9455 227.031 100
# Sven_2() 152.080 155.1900 156.9000 161.5650 214.591 100
# Sven_3() 146.793 151.1460 153.3235 157.9885 187.845 100
# a data frame with 10.000 rows
set.seed(1)
dat <- dat[sample(nrow(dat), 10000, TRUE), ]
microbenchmark(Codoremifa(), Marco(), Sven(), Sven_2(), Sven_3())
# Unit: milliseconds
# expr min lq median uq max neval
# Codoremifa() 2.426419 2.471204 3.488017 3.750189 84.268432 100
# Marco() 36.268766 37.840246 39.406751 40.791321 119.233175 100
# Sven() 2.145587 2.184150 2.205299 2.270764 83.055534 100
# Sven_2() 2.007814 2.048711 2.077167 2.207942 84.944856 100
# Sven_3() 1.814994 1.844229 1.861022 1.917779 4.452892 100
答案 1 :(得分:3)
为何使用总和?简单地检查所有元素是否为零更有效。 我会做的
dat = dat[!apply(dat, 1, function(x) all(x == 0)), ]
如果您需要跟踪已删除的行:
indremoved = which(apply(dat, 1, function(x) all(x == 0)) )
dat = dat[ -indremoved, ]
答案 2 :(得分:2)
尝试dat[rowSums(abs(dat)) != 0,]
。
答案 3 :(得分:2)
更短且更高效(至少在我的机器上)是使用Reduce
和|
dat <- data.frame(a = c(0,0,2,3), b= c(1,0,0,0), c=c(0,0,1,3))
dat[Reduce(`|`,dat),]
# a b c
# 1 0 1 0
# 3 2 0 1
# 4 3 0 3
处理新手入门
当前的解决方案无法处理NAs
,以适应我的(使用示例来自:How to remove rows with all zeros without using rowSums in R?):
dat2 <- data.frame(a=c(0,0,0,0),b=c(0,-1,NA,1),c=c(0,1,0,-1),d=c(0,NA,0,0), e=c(0,0,NA,1))
# a b c d e
# 1 0 0 0 0 0
# 2 0 -1 1 NA 0
# 3 0 NA 0 0 NA
# 4 0 1 -1 0 1
如果您要删除包含NAs
AND 零的行
dat[Reduce(`|`,`[<-`(dat,is.na(dat),value=0)),]
# a b c d e
# 2 0 -1 1 NA 0
# 4 0 1 -1 0 1
如果你想保留它们:
dat[Reduce(`|`,`[<-`(dat,is.na(dat),value=1)),]
# a b c d e
# 2 0 -1 1 NA 0
# 3 0 NA 0 0 NA
# 4 0 1 -1 0 1
更新了基准(假设没有NAs的所有方法)
dat <- data.frame(a = c(0,0,2,3), b= c(1,0,0,0), c=c(0,0,1,3))
mm <- function() dat[Reduce(`|`,dat),]
microbenchmark(Codoremifa(), Marco(), Sven(), Sven_2(), Sven_3(),mm(),unit='relative',times=50)
# Unit: relative
# expr min lq mean median uq max neval
# Codoremifa() 4.060050 4.020630 3.979949 3.921504 3.814334 4.517048 50
# Marco() 2.473624 2.358608 2.397922 2.444411 2.431119 2.365830 50
# Sven() 1.932279 1.937906 1.954935 2.013045 1.999980 1.960975 50
# Sven_2() 1.857111 1.834460 1.871929 1.885606 1.898201 2.595113 50
# Sven_3() 1.781943 1.731038 1.814738 1.800647 1.766469 3.346325 50
# mm() 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 50
# a data frame with 10.000 rows
set.seed(1)
dat <- dat[sample(nrow(dat), 10000, TRUE), ]
library(microbenchmark)
microbenchmark(Codoremifa(), Marco(), Sven(), Sven_2(), Sven_3(),mm(),unit='relative',times=50)
# Unit: relative
# expr min lq mean median uq max neval
# Codoremifa() 1.395990 1.496361 3.224857 1.520903 3.146186 26.793544 50
# Marco() 35.794446 36.015642 29.930283 35.625356 34.414162 13.379470 50
# Sven() 1.347117 1.363027 1.473354 1.375143 1.408369 1.175388 50
# Sven_2() 1.268169 1.281210 1.466629 1.299255 1.355403 2.605840 50
# Sven_3() 1.067669 1.124846 1.380731 1.122851 1.191207 2.384538 50
# mm() 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 50