如何通过更改x轴将已知值拟合到已知曲线

时间:2013-12-05 10:25:42

标签: r data-fitting

这是交叉验证问题的连续统一体,其中I asked about plausible methods表示问题。这个问题更加面向编程,因此我将其发布在SO上。

背景

我的曲线已知日期超过一年。该曲线的y值是根据日常温度和盐度记录计算的d18O values的预测值。我还测量了由calcium carbonate组成的壳的d18O值。这些值是沿距离轴测量的,其中第一次和最后一次测量大致(但不完全)与曲线的开始和结束同时发生。

众所周知,d18O值与某些未知随机误差内的曲线中的预测值相匹配。我希望通过改变测量值的x轴(或者至少通过将索引与曲线中的索引匹配)来获得曲线测量值的最佳拟合。通过这种方式,我可以估算出测量值的日期,并可以进一步估算壳体在一年中的增长率。预计增长率是可变的,并且可能存在增长中断(即增长停止)。然而,测量值之间的增长必须> 0 (约束)。

示例数据

以下是示例数据集(curvemeas ured):

meas <- structure(list(index = 1:10, distance = c(0.1, 1, 3, 5, 7, 8, 
13, 20, 22, 25), value = c(3.5, 4.2, 4.5, 4.4, 4.7, 4.8, 5.1, 
4.9, 4.1, 3.7)), .Names = c("index", "distance", "value"), class = "data.frame",
row.names = c(NA, -10L))   

curve <- structure(list(date = structure(c(15218, 15219, 15220, 15221, 
15222, 15223, 15224, 15225, 15226, 15227, 15228, 15229, 15230, 
15231, 15232, 15233, 15234, 15235, 15236, 15237, 15238, 15239, 
15240, 15241, 15242, 15243, 15244, 15245, 15246, 15247, 15248, 
15249, 15250, 15251, 15252, 15253, 15254, 15255, 15256, 15257, 
15258, 15259, 15260, 15261, 15262, 15263, 15264, 15265, 15266, 
15267, 15268, 15269, 15270, 15271, 15272, 15273, 15274, 15275, 
15276, 15277, 15278, 15279, 15280, 15281, 15282, 15283, 15284, 
15285, 15286, 15287, 15288, 15289, 15290, 15291, 15292, 15293, 
15294, 15295, 15296, 15297, 15298, 15299, 15300, 15301, 15302, 
15303, 15304, 15305, 15306, 15307, 15308, 15309, 15310, 15311, 
15312, 15313, 15314, 15315, 15316, 15317, 15318, 15319, 15320, 
15321, 15322, 15323, 15324, 15325, 15326, 15327, 15328, 15329, 
15330, 15331, 15332, 15333, 15334, 15335, 15336, 15337, 15338, 
15339, 15340, 15341, 15342, 15343, 15344, 15345, 15346, 15347, 
15348, 15349, 15350, 15351, 15352, 15353, 15354, 15355, 15356, 
15357, 15358, 15359, 15360, 15361, 15362, 15363, 15364, 15365, 
15366, 15367, 15368, 15369, 15370, 15371, 15372, 15373, 15374, 
15375, 15376, 15377, 15378, 15379, 15380, 15381, 15382, 15383, 
15384, 15385, 15386, 15387, 15388, 15389, 15390, 15391, 15392, 
15393, 15394, 15395, 15396, 15397, 15398, 15399, 15400, 15401, 
15402, 15403, 15404, 15405, 15406, 15407, 15408, 15409, 15410, 
15411, 15412, 15413, 15414, 15415, 15416, 15417, 15418, 15419, 
15420, 15421, 15422, 15423, 15424, 15425, 15426, 15427, 15428, 
15429, 15430, 15431, 15432, 15433, 15434, 15435, 15436, 15437, 
15438, 15439, 15440, 15441, 15442, 15443, 15444, 15445, 15446, 
15447, 15448, 15449, 15450, 15451, 15452, 15453, 15454, 15455, 
15456, 15457, 15458, 15459, 15460, 15461, 15462, 15463, 15464, 
15465, 15466, 15467, 15468, 15469, 15470, 15471, 15472, 15473, 
15474, 15475, 15476, 15477, 15478, 15479, 15480, 15481, 15482, 
15483, 15484, 15485, 15486, 15487, 15488, 15489, 15490, 15491, 
15492, 15493, 15494, 15495, 15496, 15497, 15498, 15499, 15500, 
15501, 15502, 15503, 15504, 15505, 15506, 15507, 15508, 15509, 
15510, 15511, 15512, 15513, 15514, 15515, 15516, 15517, 15518, 
15519, 15520, 15521, 15522, 15523, 15524, 15525, 15526, 15527, 
15528, 15529, 15530, 15531, 15532, 15533, 15534, 15535, 15536, 
15537, 15538, 15539, 15540, 15541, 15542, 15543, 15544, 15545, 
15546, 15547, 15548, 15549, 15550, 15551, 15552, 15553, 15554, 
15555, 15556, 15557, 15558, 15559, 15560, 15561, 15562, 15563, 
15564, 15565, 15566, 15567, 15568, 15569, 15570, 15571, 15572, 
15573, 15574, 15575, 15576, 15577, 15578, 15579, 15580, 15581, 
15582, 15583, 15584), class = "Date"), index = 1:367, value = c(3.33, 
3.35, 3.36, 3.38, 3.4, 3.42, 3.43, 3.45, 3.47, 3.48, 3.5, 3.52, 
3.53, 3.55, 3.56, 3.58, 3.6, 3.61, 3.63, 3.64, 3.66, 3.67, 3.69, 
3.7, 3.72, 3.73, 3.75, 3.76, 3.78, 3.79, 3.81, 3.82, 3.83, 3.85, 
3.86, 3.88, 3.89, 3.9, 3.92, 3.93, 3.94, 3.96, 3.97, 3.98, 3.99, 
4.01, 4.02, 4.03, 4.04, 4.06, 4.07, 4.08, 4.09, 4.1, 4.11, 4.13, 
4.14, 4.15, 4.16, 4.17, 4.18, 4.19, 4.2, 4.21, 4.22, 4.23, 4.24, 
4.25, 4.26, 4.27, 4.28, 4.28, 4.29, 4.3, 4.31, 4.32, 4.33, 4.33, 
4.34, 4.35, 4.36, 4.36, 4.37, 4.38, 4.38, 4.39, 4.4, 4.41, 4.41, 
4.42, 4.42, 4.43, 4.44, 4.44, 4.45, 4.45, 4.46, 4.46, 4.47, 4.47, 
4.47, 4.48, 4.48, 4.49, 4.49, 4.49, 4.5, 4.5, 4.5, 4.51, 4.51, 
4.51, 4.52, 4.52, 4.53, 4.53, 4.53, 4.54, 4.54, 4.54, 4.55, 4.55, 
4.56, 4.57, 4.57, 4.58, 4.58, 4.59, 4.6, 4.61, 4.61, 4.62, 4.63, 
4.64, 4.64, 4.65, 4.66, 4.67, 4.67, 4.68, 4.69, 4.7, 4.7, 4.71, 
4.72, 4.72, 4.73, 4.74, 4.74, 4.75, 4.75, 4.75, 4.76, 4.76, 4.76, 
4.76, 4.76, 4.76, 4.76, 4.76, 4.76, 4.75, 4.75, 4.75, 4.75, 4.74, 
4.74, 4.73, 4.73, 4.73, 4.72, 4.72, 4.72, 4.71, 4.71, 4.71, 4.71, 
4.7, 4.7, 4.7, 4.71, 4.71, 4.71, 4.71, 4.72, 4.72, 4.73, 4.74, 
4.75, 4.75, 4.76, 4.78, 4.79, 4.8, 4.81, 4.82, 4.83, 4.84, 4.85, 
4.86, 4.88, 4.89, 4.9, 4.91, 4.92, 4.92, 4.93, 4.94, 4.95, 4.95, 
4.95, 4.96, 4.96, 4.96, 4.96, 4.96, 4.95, 4.95, 4.95, 4.94, 4.93, 
4.92, 4.92, 4.91, 4.9, 4.89, 4.88, 4.87, 4.86, 4.85, 4.84, 4.83, 
4.82, 4.8, 4.79, 4.78, 4.77, 4.76, 4.75, 4.75, 4.74, 4.73, 4.72, 
4.72, 4.71, 4.71, 4.71, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 4.7, 
4.7, 4.7, 4.7, 4.7, 4.7, 4.69, 4.69, 4.69, 4.69, 4.69, 4.69, 
4.69, 4.69, 4.68, 4.68, 4.68, 4.67, 4.67, 4.67, 4.66, 4.65, 4.65, 
4.64, 4.63, 4.62, 4.61, 4.6, 4.59, 4.58, 4.57, 4.56, 4.55, 4.54, 
4.53, 4.51, 4.5, 4.49, 4.48, 4.47, 4.46, 4.45, 4.43, 4.42, 4.41, 
4.4, 4.39, 4.38, 4.37, 4.36, 4.35, 4.34, 4.33, 4.32, 4.32, 4.31, 
4.3, 4.29, 4.28, 4.28, 4.27, 4.26, 4.25, 4.24, 4.24, 4.23, 4.22, 
4.21, 4.21, 4.2, 4.19, 4.18, 4.17, 4.17, 4.16, 4.15, 4.14, 4.14, 
4.13, 4.12, 4.12, 4.11, 4.1, 4.09, 4.08, 4.08, 4.07, 4.06, 4.05, 
4.05, 4.04, 4.03, 4.02, 4.02, 4.01, 4, 4, 3.99, 3.98, 3.97, 3.97, 
3.96, 3.95, 3.94, 3.94, 3.93, 3.92, 3.92, 3.91, 3.9, 3.9, 3.89, 
3.88)), .Names = c("date", "index", "value"), row.names = c(NA, 
-367L), class = "data.frame")

......以下是它的样子:

library(ggplot2)
library(scales)
library(gridExtra)

p.curve <- ggplot() + geom_line(data = curve, aes(x = date, y = value)) + scale_x_date(name = "Month", breaks = date_breaks("months"), labels = date_format("%b")) + labs(title = "curve")
p.meas <- ggplot(meas, aes(x = distance, y = value)) + geom_point(color = "red") + labs(title = "measured", x = "Distance (mm)")

grid.arrange(p.curve, p.meas, ncol = 1)

enter image description here

实践中的问题

我想通过更改meas的x轴来找到R的数学/统计方法以使curve适合meas。另外,我希望获得某种拟合优度统计数据来比较彼此之间拟合的“x轴”(如果我运行具有不同约束的几个模型)。我将“x轴模型”称为增长模型,因为它本质上就是这样。我想通过指定meas值之间的距离必须是&gt;来约束拟合。 0. Meas index == 2index == 1必须在ggplot() + geom_line(data = curve, aes(x = index, y = value)) + geom_line(data = meas, aes(x = index, y = value), color = "red", linetype = 2) + scale_x_continuous(breaks = seq(0,370,10)) + scale_y_continuous(breaks = seq(3,5,0.1)) 的值之后发生。我还希望能够约束增长率(即两个相邻指数点之间的最大距离)。为了证明这一点,我将手动完成:

meas

enter image description here

首先,curve(红色虚线)中的一些索引必须锚定到anchor <- data.frame(meas.index = c(1,7,10), curve.index = c(11,215,367)) example.fit <- merge(meas, anchor, by.x = "index", by.y = "meas.index", all = T, sort = F) example.fit <- example.fit[with(example.fit, order(distance)),] (黑线)的索引。我选择锚定第一个点和最后一个点加上具有最高值的点。

curve

然后,我假设这些锚定点之间存在线性增长。增长将沿Curve指数增长。 library(zoo) example.fit$curve.index <- round(na.approx(example.fit$curve.index),0) 每天有一个值。因此,增长将是每日规模。

library(plyr)

example.fit$date <- as.Date(mapvalues(example.fit$curve.index, from = curve$index, to = as.character(curve$date)))

a <- ggplot() + geom_line(data = curve, aes(x = date, y = value)) + geom_point(data = example.fit, aes(x = date, y = value), color = "red") + scale_x_date(limits = range(curve$date), name = "Month", breaks = date_breaks("months"), labels = date_format("%b"))

b <- ggplot(example.fit, aes(x = date, y = distance)) + geom_line() + scale_x_date(limits = range(curve$date), name = "Month", breaks = date_breaks("months"), labels = date_format("%b"))

grid.arrange(a,b)

在此之后,我用日期替换索引并绘制结果。

na.approx

enter image description here

上图显示了最终的拟合,它基于三个锚点。下图显示了每日间隔时间的模拟增长。 3月初增长曲线的弯曲是一些我不理解的有趣数学假象(由于zoo包中的curve函数)。

我尝试了什么

my previous question我了解到dynamic time warping可能是一个解决方案。我还找到了an R package,它包含了dtw函数。尼斯。实际上,动态时间扭曲对于我在该问题中的示例数据集起作用(除了设置约束),但我不能让它适用于此数据集,其中meas的数据点比points多得多(在上一个问题中称为{{1}})。我会尝试节省一些空间,不会在这里复制代码/数字。你可以在我对这个问题的回答中看到我的尝试。问题似乎是除了最简单的步骤模式之外,没有一个步骤模式可以处理这些类型的数据。最简单的步骤模式将测量值与曲线多次匹配,这是我想要避免的,因为我需要为每个测量点定义日期。同样设置测量点之间增长率必须> 0的约束似乎很困难。

问题

我的问题有两个:第一,是否有更好的方法来解决问题,而不是动态时间扭曲?第二,我如何在R的实践中做到这一点?

编辑 9. 2013年12月我试图让问题更加清晰。

1 个答案:

答案 0 :(得分:19)

我不确定我100%理解目标是什么,但如果您希望将测量点拟合到参考曲线,那么使用dtw似乎是明智的。将10个测量点拟合到370个奇数曲线点会产生一个稍微奇怪的结果(这只是对称step.pattern的优化)。我认为这很大程度上取决于少数几点。

可能有用的一个选项是使用ggplot()(或其他功能)来平滑测量曲线并提供一些额外的匹配点。但显然它只能根据测量点的限制做很多事情。由于点数太少,您可能会在拟合数据的过程中丢失信息。

如果您可以将curvemeas观察的第一个和最后一个点完全同时发生,那么这也会有所帮助,因为您与open.begin和{{1 }} open.end,但我不确定具体日期是否可用。

这表示将FALSE平滑到80个点,并将10点原始数据和80点平滑映射到参考meas

curve

enter image description here

修改

显然,部分问题是置信区间。我在这里添加了一个示例,在平滑曲线周围的标准误差水平内构建随机曲线。如您所见,它与使用投影曲线本身完全不同。我认为问题在于,当你试图将10个测量值与370点参考曲线进行映射时,除非他们严格跟踪,否则很难得到精确的预测。

require(ggplot2)
require(scales)
require(gridExtra)
require(dtw)
require(plyr)

# use ggplot default to smooth the 10 point curve
meas.plot.smooth<-ggplot(meas, aes(x = distance, y = value)) + geom_line() + labs(title = "ggplot smoothed (blue curve)")+geom_smooth()
# use ggplot_build() to get the smoothed points
meas.curve.smooth<-ggplot_build(meas.plot.smooth)$data[[2]]

orig.align<-dtw(meas$value,curve$value,keep=T,step.pattern=symmetric1)
orig.freqs<-count(orig.align$index1)
# reference the matching points (which are effectively dates)
orig.freqs$cumsum<-cumsum(orig.freqs$freq)  

g.10<-ggplot() + geom_line(data = curve, aes(x = date, y = value)) +
  geom_line(aes(x = curve[orig.freqs$cumsum,"date"], y = meas$value),color="red") +
  geom_text(aes(x = curve[orig.freqs$cumsum,"date"], y = meas$value, label=orig.freqs$x),color="red",size=5) + 
  scale_x_date(name = "Month", breaks = date_breaks("months"), labels = date_format("%b")) + 
  labs(title = "Native 10 pt curve - dtw mapped")


smooth.align<-dtw(meas.curve.smooth$y,curve$value,keep=T,step.pattern=symmetric1)
smooth.freqs<-count(smooth.align$index1)
smooth.freqs$cumsum<-cumsum(smooth.freqs$freq)

g.80<-ggplot() + geom_line(data = curve, aes(x = date, y = value)) +
  geom_line(aes(x = curve[smooth.freqs$cumsum,"date"], y = meas.curve.smooth$y),color="red") +
  scale_x_date(name = "Month", breaks = date_breaks("months"), labels = date_format("%b")) + 
  geom_text(aes(x = curve[smooth.freqs$cumsum,"date"], y = meas.curve.smooth$y, label=smooth.freqs$x),color="red",size=3.5,position="jitter") + 
  labs(title = "80 point loess curve - dtw mapped")

grid.arrange(meas.plot.smooth,g.10,g.80,ncol=1)

enter image description here

已更新

修改以包含模拟。

好的 - 这已更新为运行1000次模拟。它创建了映射曲线,从95%CI中随机化。我在rand.align<-dtw(meas.curve.smooth$ymin+(meas.curve.smooth$ymax-meas.curve.smooth$ymin)*runif(length(meas.curve.smooth$ymin)),curve$value,keep=T,step.pattern=symmetric1) rand.freqs<-count(rand.align$index1) rand.freqs$cumsum<-cumsum(rand.freqs$freq) g.rand<-ggplot() + geom_line(data = curve, aes(x = date, y = value)) + geom_line(aes(x = curve[rand.freqs$cumsum,"date"], y = meas.curve.smooth$y),color="red") + scale_x_date(name = "Month", breaks = date_breaks("months"), labels = date_format("%b")) + geom_text(aes(x = curve[rand.freqs$cumsum,"date"], y = meas.curve.smooth$y, label=rand.freqs$x),color="red",size=3.5,position="jitter") + labs(title = "Random curve within standard CI - dtw mapped") grid.arrange(meas.plot.smooth,g.10,g.80,g.rand,ncol=1) 函数中将n更改为10(从80开始),以尝试从测量曲线中尽可能多地保留信息。

它模拟累积增长(假设未测量天数之间的线性增长)

不确定它是否完全有用,但提供了一种可视化不确定性的好方法。

geom_smooth()

enter image description here

以及其他一些查看尾巴的方法:

get_scenario<-function(i){
  set.seed(i)
  # create random curve within the CI
  rand.align<-dtw(meas.curve.smooth$ymin+(meas.curve.smooth$ymax-meas.curve.smooth$ymin)*runif(length(meas.curve.smooth$ymin)),curve$value,keep=T,step.pattern=symmetric1)
  rand.freqs<-count(rand.align$index1)
  rand.freqs$cumsum<-cumsum(rand.freqs$freq)
  growth.index<-data.frame(cumsum=curve$index,val=curve$value)
  merged<-merge(growth.index,rand.freqs,by="cumsum")
  return(data.frame(x=merged$cumsum,growth=cumsum(merged$val*merged$freq),scenario=i))  
}

scenario.set <- ldply(lapply(1:1000,function(l)get_scenario(l)), data.frame)

g.s<-ggplot(scenario.set,aes(x,growth)) + 
      geom_line(aes(,group=scenario,color=scenario),alpha=0.25) + 
      scale_colour_gradient(low = "yellow", high = "orangered") +
      xlab("Days from start") + ylab("Cumulative Growth")
g.xmax<-max(scenario.set$x)  # get the final day (or set to another day)
g.xmin<-g.xmax-30            # thirty day window from end
b<-ggplot_build(g.s)
build.data<-b$data[[1]]
ylims<-build.data[build.data$x<=g.xmax & build.data$x>=g.xmin,]$y

g.subplot<-g.s+geom_point(aes(x,growth,color=scenario),alpha=0.25,size=5,position="jitter")+coord_cartesian(xlim=c(g.xmin,g.xmax),ylim=c(min(ylims),max(ylims)))

grid.arrange(meas.plot.smooth,g.s,g.subplot,ncol=1)    

enter image description here