你好 [¹]
我有一个简单的解析器(见下文)。
它打算解析条件表达式(关系算术运算及其逻辑组合)。
在那里给出的例子中,它成功解析A> 5然后停止并忽略输入的其余部分,这与我的impl一致。
如何更改expr_
规则以使其解析整个输入?
#include <cstdint>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/variant/recursive_wrapper.hpp>
namespace qi = boost::spirit::qi;
namespace phx = boost::phoenix;
/// Terminals
enum metric_t : std::uint8_t { A=0u, B };
const std::string metric_names[] = { "A", "B" };
struct metrics_parser : boost::spirit::qi::symbols<char, metric_t>
{
metrics_parser()
{
this->add
( metric_names[A], A )
( metric_names[B], B )
;
}
};
/// Operators
struct op_or {};
struct op_and {};
struct op_xor {};
struct op_not {};
struct op_eq {};
struct op_lt {};
struct op_let {};
struct op_gt {};
struct op_get {};
template <typename tag> struct unop;
template <typename tag> struct binop;
/// Expression
typedef boost::variant<
int,
double,
metric_t,
boost::recursive_wrapper< unop<op_not> >,
boost::recursive_wrapper< binop<op_and> >,
boost::recursive_wrapper< binop<op_or> >,
boost::recursive_wrapper< binop<op_xor> >,
boost::recursive_wrapper< binop<op_eq> >,
boost::recursive_wrapper< binop<op_lt> >,
boost::recursive_wrapper< binop<op_gt> >
> expr;
template <typename tag>
struct binop
{
explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
expr oper1, oper2;
};
template <typename tag>
struct unop
{
explicit unop(const expr& o) : oper1(o) { }
expr oper1;
};
struct printer : boost::static_visitor<void>
{
printer(std::ostream& os) : _os(os) {}
std::ostream& _os;
void operator()(const binop<op_and>& b) const { print(" and ", b.oper1, b.oper2); }
void operator()(const binop<op_or >& b) const { print(" or ", b.oper1, b.oper2); }
void operator()(const binop<op_xor>& b) const { print(" xor ", b.oper1, b.oper2); }
void operator()(const binop<op_eq>& b) const { print(" = ", b.oper1, b.oper2); }
void operator()(const binop<op_lt>& b) const { print(" < ", b.oper1, b.oper2); }
void operator()(const binop<op_gt>& b) const { print(" > ", b.oper1, b.oper2); }
void print(const std::string& op, const expr& l, const expr& r) const
{
_os << "(";
boost::apply_visitor(*this, l);
_os << op;
boost::apply_visitor(*this, r);
_os << ")";
}
void operator()(const unop<op_not>& u) const
{
_os << "(";
_os << "!";
boost::apply_visitor(*this, u.oper1);
_os << ")";
}
void operator()(metric_t m) const
{
_os << metric_names[m];
}
template <typename other_t>
void operator()(other_t i) const
{
_os << i;
}
};
std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }
std::ostream& operator<<(std::ostream& os, metric_t m)
{ os<< metric_names[m]; return os; }
template <typename It, typename Skipper = qi::space_type>
struct parser : qi::grammar<It, expr(), Skipper>
{
parser() : parser::base_type(expr_)
{
using namespace qi;
using namespace phx;
using local_names::_a;
number_r_ %= int_ | double_;
metric_r_ %= metric_p_;
eq_r_ =
(metric_r_ >> "=" >> number_r_)
[ _val = phx::construct< binop<op_eq> >(_1,_2) ] |
(metric_r_ >> "!=" >> number_r_)
[ _val = phx::construct< unop<op_not> >( phx::construct< binop<op_eq> >(_1,_2) ) ]
;
ineq_r_ =
(metric_r_ >> ">" >> number_r_)
[ _val = phx::construct< binop<op_gt> >(_1,_2) ] |
(metric_r_ >> "<" >> number_r_)
[ _val = phx::construct< binop<op_lt> >(_1,_2) ] |
(metric_r_ >> ">=" >> number_r_)
[ _val = phx::construct< binop<op_or> >(
phx::construct< binop<op_gt> >(_1,_2),
phx::construct< binop<op_eq> >(_1,_2) )
] |
(metric_r_ >> "<=" >> number_r_)
[ _val = phx::construct< binop<op_or> >(
phx::construct< binop<op_lt> >(_1,_2),
phx::construct< binop<op_eq> >(_1,_2) )
]
;
ineq_2_r_ =
(number_r_ >> "<" >> metric_r_ >> "<" >> number_r_)
[ _val = phx::construct< binop<op_and> >(
phx::construct< binop<op_gt> >(_2,_1),
phx::construct< binop<op_lt> >(_2,_3) )
] |
(number_r_ >> "<=" >> metric_r_ >> "<" >> number_r_)
[ _val = phx::construct< binop<op_and> >(
phx::construct< binop<op_or> >(
phx::construct< binop<op_gt> >(_2,_1),
phx::construct< binop<op_eq> >(_2,_1)
),
phx::construct< binop<op_lt> >(_2,_3) )
] |
(number_r_ >> "<" >> metric_r_ >> "<=" >> number_r_)
[ _val = phx::construct< binop<op_and> >(
phx::construct< binop<op_gt> >(_2,_1),
phx::construct< binop<op_or> >(
phx::construct< binop<op_eq> >(_2,_3),
phx::construct< binop<op_lt> >(_2,_3) )
)
] |
(number_r_ >> "<=" >> metric_r_ >> "<=" >> number_r_)
[ _val = phx::construct< binop<op_and> >(
phx::construct< binop<op_or> >(
phx::construct< binop<op_eq> >(_2,_1),
phx::construct< binop<op_gt> >(_2,_1)
),
phx::construct< binop<op_or> >(
phx::construct< binop<op_eq> >(_2,_3),
phx::construct< binop<op_lt> >(_2,_3)
)
)
]
;
expr_ =
eq_r_ [ _val = _1 ] |
ineq_r_ [ _val = _1 ] |
ineq_2_r_ [ _val = _1 ] |
("not" >> expr_) [ _val = phx::construct< unop<op_not> >(_1) ] |
(expr_ >> "and" >> expr_) [ _val = phx::construct< binop<op_and> >(_1,_2) ] |
(expr_ >> "or" >> expr_) [ _val = phx::construct< binop<op_or> >(_1,_2) ] |
(expr_ >> "xor" >> expr_) [ _val = phx::construct< binop<op_xor> >(_1,_2) ];
metric_r_.name("metric r");
eq_r_.name("eq_r_");
ineq_r_.name("ineq_r_");
ineq_2_r_.name("ineq_2_r_");
expr_.name("expr_");
debug(metric_r_);
debug(eq_r_);
debug(ineq_r_);
debug(ineq_2_r_);
debug(expr_);
}
private:
metrics_parser metric_p_;
qi::rule<It, expr(), Skipper> number_r_;
qi::rule<It, expr(), Skipper> metric_r_;
qi::rule<It, expr(), Skipper> eq_r_;
qi::rule<It, expr(), Skipper> ineq_r_;
qi::rule<It, expr(), Skipper> ineq_2_r_;
qi::rule<It, expr(), Skipper> expr_;
};
int main()
{
std::list<std::string> lstr;
lstr.emplace_back("A>5 and B<4 xor A>3.4 or 2<A<3");
for (auto i=std::begin(lstr); i!=std::end(lstr); ++i)
{
auto& input = *i;
auto f(std::begin(input)), l(std::end(input));
parser<decltype(f)> p;
try
{
expr result;
bool ok = qi::phrase_parse(f,l,p,qi::space,result);
if (!ok)
std::cerr << "invalid input\n";
else
std::cout << "result: " << result << "\n";
} catch (const qi::expectation_failure<decltype(f)>& e)
{
std::cerr << "expectation_failure at '" << std::string(e.first, e.last) << "'\n";
}
if (f!=l) std::cerr << "unparsed: '" << std::string(f,l) << "'\n";
}
return 0;
}
谢谢, MM
[¹] 来自 [spirit-general] user list
传送的问题答案 0 :(得分:3)
坚持使用简单:
relop_expr = eq_r_ | ineq_r_ | ineq_2_r_;
expr_ =
("not" >> expr_) [ _val = phx::construct< unop<op_not> >(_1) ] |
(relop_expr >> "and" >> expr_) [ _val = phx::construct< binop<op_and> >(_1,_2) ] |
(relop_expr >> "or" >> expr_) [ _val = phx::construct< binop<op_or> >(_1,_2) ] |
(relop_expr >> "xor" >> expr_) [ _val = phx::construct< binop<op_xor> >(_1,_2) ] |
(relop_expr ) [ _val = _1 ]
;
BOOST_SPIRIT_DEBUG_NODES((metric_r_)(eq_r_)(ineq_r_)(ineq_2_r_)(relop_expr)(expr_))
注意:
relop_expr
)来诱导优先级仍有工作要做(3.4
尚未解析,2<A<3
也没有解析。而且,这是非常低效的(可以用左分解)。解决这些问题:
number_r_ = real_parser<double,strict_real_policies<double>>() | int_;
relop_expr = eq_r_ | ineq_2_r_ | ineq_r_;
expr_ =
("not" >> expr_) [ _val = construct<unop<op_not>> (_1) ] |
relop_expr [_a = _1] >> (
("and" >> expr_ [ _val = bin_<op_and>() ]) |
("or" >> expr_ [ _val = bin_<op_or >() ]) |
("xor" >> expr_ [ _val = bin_<op_xor>() ]) |
(eps [ _val = _a ])
)
;
正如您所看到的,我无法忍受那些复杂的语义行为。这个的主要原因是BUGS。使代码可读,丢失一半的错误。所以,只需两个简单的助手,我们就可以减少冗长:
template <typename Tag> using bin_ = decltype(phx::construct<binop<Tag>>(qi::_a, qi::_1));
template <typename T1, typename T2> using tern_ = decltype(phx::construct<binop<op_and>>(phx::construct<binop<T1>>(qi::_a, qi::_1), phx::construct<binop<T2>>(qi::_1, qi::_2)));
正如你所看到的,我并没有花很多精力来写出特质等等。只要你写下任何东西都可以快速取消,并且 bam
ineq_2_r_ = number_r_ [ _a = _1 ] >> (
("<" >> metric_r_ >> "<" >> number_r_) [_val = tern_<op_lt , op_lt>() ] |
("<" >> metric_r_ >> "<=" >> number_r_) [_val = tern_<op_lt , op_lte>() ] |
("<=" >> metric_r_ >> "<" >> number_r_) [_val = tern_<op_lte, op_lt>() ] |
("<=" >> metric_r_ >> "<=" >> number_r_) [_val = tern_<op_lte, op_lte>() ] |
// see, that's so easy, we can even trow in the bonus - I bet you were just fed up with writing boiler plate :)
(">" >> metric_r_ >> ">" >> number_r_) [_val = tern_<op_gt , op_gt>() ] |
(">" >> metric_r_ >> ">=" >> number_r_) [_val = tern_<op_gt , op_gte>() ] |
(">=" >> metric_r_ >> ">" >> number_r_) [_val = tern_<op_gte, op_gt>() ] |
(">=" >> metric_r_ >> ">=" >> number_r_) [_val = tern_<op_gte, op_gte>() ]
);
哦,我记得:我已经定义了op_gte
和op_lte
运算符,因为没有它们会导致语义动作的二次增长。我的快速经验法则是:
- 规则#1 :保持规则简单,避免语义操作
- 推论#1 :让你的AST直接反映语法。
在这种情况下,您将AST转换与解析混为一谈。如果你想将AST转换为'expand'tel(a,b)&lt; - (lt(a,b)|| eq(a,b)),你可以在之后轻易地做到解析。 更新 see the other answer for a demo
总而言之,我已将这些建议附在工作计划中。它实现了更多功能,并且缩短了73行(28%)。即使有更多测试用例,也是如此:
'A > 5': result: (A > 5)
'A < 5': result: (A < 5)
'A >= 5': result: (A >= 5)
'A <= 5': result: (A <= 5)
'A = 5': result: (A = 5)
'A != 5': result: !(A = 5)
'A>5 and B<4 xor A>3.4 or 2<A<3': result: ((A > 5) and ((B < 4) xor ((A > 3.4) or ((2 < A) and (A < 3)))))
'A>5 and B<4 xor A!=3.4 or 7.9e10 >= B >= -42': result: ((A > 5) and ((B < 4) xor (!(A = 3.4) or ((7.9e+10 >= B) and (B >= -42)))))
好吧,我已经把它展示在Coliru上了,但现在看来似乎已经失败了。希望你喜欢这个。
//#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/variant/recursive_wrapper.hpp>
#include <cstdint>
namespace qi = boost::spirit::qi;
namespace phx = boost::phoenix;
/// Terminals
enum metric_t : std::uint8_t { A=0u, B };
const std::string metric_names[] = { "A", "B" };
struct metrics_parser : boost::spirit::qi::symbols<char, metric_t> {
metrics_parser() {
this->add(metric_names[A], A)
(metric_names[B], B);
}
};
/// Operators
template <typename tag> struct unop;
template <typename tag> struct binop;
/// Expression
typedef boost::variant<
int,
double,
metric_t,
boost::recursive_wrapper< unop< struct op_not> >,
boost::recursive_wrapper< binop<struct op_and> >,
boost::recursive_wrapper< binop<struct op_or> >,
boost::recursive_wrapper< binop<struct op_xor> >,
boost::recursive_wrapper< binop<struct op_eq> >,
boost::recursive_wrapper< binop<struct op_lt> >,
boost::recursive_wrapper< binop<struct op_gt> >,
boost::recursive_wrapper< binop<struct op_lte> >,
boost::recursive_wrapper< binop<struct op_gte> >
> expr;
template <typename tag>
struct binop {
explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
expr oper1, oper2;
};
template <typename tag>
struct unop {
explicit unop(const expr& o) : oper1(o) { }
expr oper1;
};
std::ostream& operator<<(std::ostream& os, metric_t m)
{ return os << metric_names[m]; }
struct printer : boost::static_visitor<void>
{
printer(std::ostream& os) : _os(os) {}
std::ostream& _os;
void operator()(const binop<op_and>& b) const { print(" and ", b.oper1, b.oper2); }
void operator()(const binop<op_or >& b) const { print(" or ", b.oper1, b.oper2); }
void operator()(const binop<op_xor>& b) const { print(" xor ", b.oper1, b.oper2); }
void operator()(const binop<op_eq >& b) const { print(" = ", b.oper1, b.oper2); }
void operator()(const binop<op_lt >& b) const { print(" < ", b.oper1, b.oper2); }
void operator()(const binop<op_gt >& b) const { print(" > ", b.oper1, b.oper2); }
void operator()(const binop<op_lte>& b) const { print(" <= ", b.oper1, b.oper2); }
void operator()(const binop<op_gte>& b) const { print(" >= ", b.oper1, b.oper2); }
void print(const std::string& op, const expr& l, const expr& r) const {
_os << "(";
boost::apply_visitor(*this, l); _os << op; boost::apply_visitor(*this, r);
_os << ")";
}
void operator()(const unop<op_not>& u) const {
_os << "!"; boost::apply_visitor(*this, u.oper1);
}
template <typename other_t> void operator()(other_t i) const {
_os << i;
}
};
std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }
template <typename It, typename Skipper = qi::space_type >
struct parser : qi::grammar<It, expr(), Skipper, qi::locals<expr> >
{
template <typename Tag> using bin_ = decltype(phx::construct<binop<Tag>>(qi::_a, qi::_1));
template <typename T1, typename T2> using tern_ = decltype(phx::construct<binop<op_and>>(phx::construct<binop<T1>>(qi::_a, qi::_1), phx::construct<binop<T2>>(qi::_1, qi::_2)));
parser() : parser::base_type(expr_)
{
using namespace qi;
using namespace phx;
number_r_ = real_parser<double,strict_real_policies<double>>() | int_;
metric_r_ = metric_p_;
eq_r_ = metric_r_ [ _a = _1 ] >> (
("=" >> number_r_) [ _val = bin_<op_eq>() ] |
("!=" >> number_r_) [ _val = construct<unop<op_not>>(bin_<op_eq>()) ]
);
ineq_2_r_ = number_r_ [ _a = _1 ] >> (
("<" >> metric_r_ >> "<" >> number_r_) [_val = tern_<op_lt , op_lt>() ] |
("<" >> metric_r_ >> "<=" >> number_r_) [_val = tern_<op_lt , op_lte>() ] |
("<=" >> metric_r_ >> "<" >> number_r_) [_val = tern_<op_lte, op_lt>() ] |
("<=" >> metric_r_ >> "<=" >> number_r_) [_val = tern_<op_lte, op_lte>() ] |
(">" >> metric_r_ >> ">" >> number_r_) [_val = tern_<op_gt , op_gt>() ] |
(">" >> metric_r_ >> ">=" >> number_r_) [_val = tern_<op_gt , op_gte>() ] |
(">=" >> metric_r_ >> ">" >> number_r_) [_val = tern_<op_gte, op_gt>() ] |
(">=" >> metric_r_ >> ">=" >> number_r_) [_val = tern_<op_gte, op_gte>() ]
);
ineq_r_ = metric_r_ [ _a = _1 ] >> (
(">" >> number_r_) [ _val = bin_<op_gt >() ] |
("<" >> number_r_) [ _val = bin_<op_lt >() ] |
(">=" >> number_r_) [ _val = bin_<op_gte>() ] |
("<=" >> number_r_) [ _val = bin_<op_lte>() ]
);
relop_expr = eq_r_ | ineq_2_r_ | ineq_r_;
expr_ =
("not" >> expr_) [ _val = construct<unop<op_not>> (_1) ] |
relop_expr [_a = _1] >> (
("and" >> expr_ [ _val = bin_<op_and>() ]) |
("or" >> expr_ [ _val = bin_<op_or >() ]) |
("xor" >> expr_ [ _val = bin_<op_xor>() ]) |
(eps [ _val = _a ])
);
BOOST_SPIRIT_DEBUG_NODES((metric_r_)(eq_r_)(ineq_r_)(ineq_2_r_)(relop_expr)(expr_))
}
private:
qi::rule<It, expr(), Skipper, qi::locals<expr> > eq_r_, ineq_r_, ineq_2_r_, relop_expr, expr_;
qi::rule<It, expr(), Skipper> number_r_, metric_r_;
metrics_parser metric_p_;
};
int main()
{
for (std::string const& input : {
"A > 5",
"A < 5",
"A >= 5",
"A <= 5",
"A = 5",
"A != 5",
"A>5 and B<4 xor A>3.4 or 2<A<3",
"A>5 and B<4 xor A!=3.4 or 7.9e10 >= B >= -42"
})
{
auto f(std::begin(input)), l(std::end(input));
parser<decltype(f)> p;
try
{
std::cout << "'" << input << "':\t";
expr result;
bool ok = qi::phrase_parse(f,l,p,qi::space,result);
if (!ok) std::cout << "invalid input\n";
else std::cout << "result: " << result << "\n";
} catch (const qi::expectation_failure<decltype(f)>& e)
{
std::cout << "expectation_failure at '" << std::string(e.first, e.last) << "'\n";
}
if (f!=l) std::cout << "unparsed: '" << std::string(f,l) << "'\n";
}
}
答案 1 :(得分:2)
从另一个答案:
- 规则#1 :保持规则简单,避免语义操作
- 推论#1 :让你的AST直接反映语法。
在这种情况下,您将AST转换与解析混为一谈。如果你想将AST转换为'expand'tel(a,b)&lt; - (lt(a,b)|| eq(a,b)),你可以在解析之后轻松地做到这一点。
也许这需要一个概念证明才能令人信服。
我几乎不能把它作为读者的练习,现在我可以:) 所以要转换AST,让我们写一个简单的访问者:
struct expander : boost::static_visitor<expr>
{
expr operator()(binop<op_lte> const& e) const {
expr oper1(recurse(e.oper1)), oper2(recurse(e.oper2));
return binop<op_or>(
binop<op_lt>(oper1, oper2),
binop<op_eq>(oper1, oper2));
}
expr operator()(binop<op_gte> const& e) const {
expr oper1(recurse(e.oper1)), oper2(recurse(e.oper2));
return binop<op_or>(
binop<op_gt>(oper1, oper2),
binop<op_eq>(oper1, oper2));
}
// recurse compound nodes
template <typename Tag> expr operator()(unop<Tag> const& e) const { return unop<Tag>(recurse(e.oper1)); }
template <typename Tag> expr operator()(binop<Tag> const& e) const { return binop<Tag>(recurse(e.oper1), recurse(e.oper2)); }
// copy leaf nodes
template <typename T> expr operator()(T const& e) const { return e; }
private:
expr recurse(expr const& e) const { return boost::apply_visitor(*this, e); };
};
expr expand(expr const& e) {
return boost::apply_visitor(expander(), e);
}
参见,只有两个表达式节点被转换,其余的被递归/复制(叶子)。 现在,我们可以将扩展结果添加到我们的测试程序输出中:
input: A > 5
result: (A > 5)
expanded: (A > 5)
input: A < 5
result: (A < 5)
expanded: (A < 5)
input: A >= 5
result: (A >= 5)
expanded: ((A > 5) or (A = 5))
input: A <= 5
result: (A <= 5)
expanded: ((A < 5) or (A = 5))
input: A = 5
result: (A = 5)
expanded: (A = 5)
input: A != 5
result: !(A = 5)
expanded: !(A = 5)
input: A>5 and B<4 xor A>3.4 or 2<A<3
result: ((A > 5) and ((B < 4) xor ((A > 3.4) or ((2 < A) and (A < 3)))))
expanded: ((A > 5) and ((B < 4) xor ((A > 3.4) or ((2 < A) and (A < 3)))))
input: A>5 and B<4 xor A!=3.4 or 7.9e10 >= B >= -42
result: ((A > 5) and ((B < 4) xor (!(A = 3.4) or ((7.9e+10 >= B) and (B >= -42)))))
expanded: ((A > 5) and ((B < 4) xor (!(A = 3.4) or (((7.9e+10 > B) or (7.9e+10 = B)) and ((B > -42) or (B = -42))))))
Q.E.D。:
使用此转换查看完整程序:
//#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/variant/recursive_wrapper.hpp>
#include <cstdint>
namespace qi = boost::spirit::qi;
namespace phx = boost::phoenix;
/// Terminals
enum metric_t : std::uint8_t { A=0u, B };
const std::string metric_names[] = { "A", "B" };
struct metrics_parser : boost::spirit::qi::symbols<char, metric_t> {
metrics_parser() {
this->add(metric_names[A], A)
(metric_names[B], B);
}
};
/// Operators
template <typename tag> struct unop;
template <typename tag> struct binop;
/// Expression
typedef boost::variant<
int,
double,
metric_t,
boost::recursive_wrapper< unop< struct op_not> >,
boost::recursive_wrapper< binop<struct op_and> >,
boost::recursive_wrapper< binop<struct op_or> >,
boost::recursive_wrapper< binop<struct op_xor> >,
boost::recursive_wrapper< binop<struct op_eq> >,
boost::recursive_wrapper< binop<struct op_lt> >,
boost::recursive_wrapper< binop<struct op_gt> >,
boost::recursive_wrapper< binop<struct op_lte> >,
boost::recursive_wrapper< binop<struct op_gte> >
> expr;
template <typename tag>
struct unop {
explicit unop(const expr& o) : oper1(o) { }
expr oper1;
};
template <typename tag>
struct binop {
explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
expr oper1, oper2;
};
std::ostream& operator<<(std::ostream& os, metric_t m)
{ return os << metric_names[m]; }
struct expander : boost::static_visitor<expr>
{
expr operator()(binop<op_lte> const& e) const {
expr oper1(recurse(e.oper1)), oper2(recurse(e.oper2));
return binop<op_or>(
binop<op_lt>(oper1, oper2),
binop<op_eq>(oper1, oper2));
}
expr operator()(binop<op_gte> const& e) const {
expr oper1(recurse(e.oper1)), oper2(recurse(e.oper2));
return binop<op_or>(
binop<op_gt>(oper1, oper2),
binop<op_eq>(oper1, oper2));
}
// recurse compound nodes
template <typename Tag> expr operator()(unop<Tag> const& e) const { return unop<Tag>(recurse(e.oper1)); }
template <typename Tag> expr operator()(binop<Tag> const& e) const { return binop<Tag>(recurse(e.oper1), recurse(e.oper2)); }
// copy leaf nodes
template <typename T> expr operator()(T const& e) const { return e; }
private:
expr recurse(expr const& e) const { return boost::apply_visitor(*this, e); };
};
expr expand(expr const& e) {
return boost::apply_visitor(expander(), e);
}
struct printer : boost::static_visitor<void>
{
printer(std::ostream& os) : _os(os) {}
std::ostream& _os;
void operator()(const binop<op_and>& b) const { print(" and ", b.oper1, b.oper2); }
void operator()(const binop<op_or >& b) const { print(" or ", b.oper1, b.oper2); }
void operator()(const binop<op_xor>& b) const { print(" xor ", b.oper1, b.oper2); }
void operator()(const binop<op_eq >& b) const { print(" = ", b.oper1, b.oper2); }
void operator()(const binop<op_lt >& b) const { print(" < ", b.oper1, b.oper2); }
void operator()(const binop<op_gt >& b) const { print(" > ", b.oper1, b.oper2); }
void operator()(const binop<op_lte>& b) const { print(" <= ", b.oper1, b.oper2); }
void operator()(const binop<op_gte>& b) const { print(" >= ", b.oper1, b.oper2); }
void print(const std::string& op, const expr& l, const expr& r) const {
_os << "(";
boost::apply_visitor(*this, l); _os << op; boost::apply_visitor(*this, r);
_os << ")";
}
void operator()(const unop<op_not>& u) const {
_os << "!"; boost::apply_visitor(*this, u.oper1);
}
template <typename other_t> void operator()(other_t i) const {
_os << i;
}
};
std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }
template <typename It, typename Skipper = qi::space_type >
struct parser : qi::grammar<It, expr(), Skipper, qi::locals<expr> >
{
template <typename Tag> using bin_ = decltype(phx::construct<binop<Tag>>(qi::_a, qi::_1));
template <typename T1, typename T2> using tern_ = decltype(phx::construct<binop<op_and>>(phx::construct<binop<T1>>(qi::_a, qi::_1), phx::construct<binop<T2>>(qi::_1, qi::_2)));
parser() : parser::base_type(expr_)
{
using namespace qi;
using namespace phx;
number_r_ = real_parser<double,strict_real_policies<double>>() | int_;
metric_r_ = metric_p_;
eq_r_ = metric_r_ [ _a = _1 ] >> (
("=" >> number_r_) [ _val = bin_<op_eq>() ] |
("!=" >> number_r_) [ _val = construct<unop<op_not>>(bin_<op_eq>()) ]
);
ineq_2_r_ = number_r_ [ _a = _1 ] >> (
("<" >> metric_r_ >> "<" >> number_r_) [_val = tern_<op_lt , op_lt>() ] |
("<" >> metric_r_ >> "<=" >> number_r_) [_val = tern_<op_lt , op_lte>() ] |
("<=" >> metric_r_ >> "<" >> number_r_) [_val = tern_<op_lte, op_lt>() ] |
("<=" >> metric_r_ >> "<=" >> number_r_) [_val = tern_<op_lte, op_lte>() ] |
(">" >> metric_r_ >> ">" >> number_r_) [_val = tern_<op_gt , op_gt>() ] |
(">" >> metric_r_ >> ">=" >> number_r_) [_val = tern_<op_gt , op_gte>() ] |
(">=" >> metric_r_ >> ">" >> number_r_) [_val = tern_<op_gte, op_gt>() ] |
(">=" >> metric_r_ >> ">=" >> number_r_) [_val = tern_<op_gte, op_gte>() ]
);
ineq_r_ = metric_r_ [ _a = _1 ] >> (
(">" >> number_r_) [ _val = bin_<op_gt >() ] |
("<" >> number_r_) [ _val = bin_<op_lt >() ] |
(">=" >> number_r_) [ _val = bin_<op_gte>() ] |
("<=" >> number_r_) [ _val = bin_<op_lte>() ]
);
relop_expr = eq_r_ | ineq_2_r_ | ineq_r_;
expr_ =
("not" >> expr_) [ _val = construct<unop<op_not>> (_1) ] |
relop_expr [_a = _1] >> (
("and" >> expr_ [ _val = bin_<op_and>() ]) |
("or" >> expr_ [ _val = bin_<op_or >() ]) |
("xor" >> expr_ [ _val = bin_<op_xor>() ]) |
(eps [ _val = _a ])
);
BOOST_SPIRIT_DEBUG_NODES((metric_r_)(eq_r_)(ineq_r_)(ineq_2_r_)(relop_expr)(expr_))
}
private:
qi::rule<It, expr(), Skipper, qi::locals<expr> > eq_r_, ineq_r_, ineq_2_r_, relop_expr, expr_;
qi::rule<It, expr(), Skipper> number_r_, metric_r_;
metrics_parser metric_p_;
};
int main()
{
for (std::string const& input : {
"A > 5",
"A < 5",
"A >= 5",
"A <= 5",
"A = 5",
"A != 5",
"A>5 and B<4 xor A>3.4 or 2<A<3",
"A>5 and B<4 xor A!=3.4 or 7.9e10 >= B >= -42"
})
{
auto f(std::begin(input)), l(std::end(input));
parser<decltype(f)> p;
try
{
std::cout << "input: " << input << "\n";
expr result;
bool ok = qi::phrase_parse(f,l,p,qi::space,result);
if (!ok) std::cout << "invalid input\n";
else
{
std::cout << "result: " << result << "\n";
std::cout << "expanded: " << expand(result) << "\n";
}
} catch (const qi::expectation_failure<decltype(f)>& e)
{
std::cout << "expectation_failure at '" << std::string(e.first, e.last) << "'\n";
}
if (f!=l) std::cout << "unparsed: '" << std::string(f,l) << "'\n";
}
}