当我第二次从其中调用方法回溯(回溯)因为我需要返回两个动作,它不起作用。有谁有想法吗?这是我的代码:
// width of board
static final int SQUARES = 8;
// board
static boolean[][] board = new boolean[SQUARES][SQUARES];
// represents values for number of squares eliminated if queen is placed in square
static int[][] elimination = new int[SQUARES][SQUARES];
// store position of queens
static boolean[][] position = new boolean[SQUARES][SQUARES];
// store row
static int[] row = new int[8];
// store column
static int[] column = new int[8];
// Write a program to solve the Eight Queens problem
public static void main(String[] args)
{
Arrays.fill(row, -1);
Arrays.fill(column, -1);
// reset elimination table
fillElim();
// count queens on board
short counter = 0;
// while board is not full
while(counter < 8) {
// place next queen on board
placeQueen(-1, -1);
// reset elimination table
fillElim();
// backtrack and fill board back to this point
while(isFull() && counter < 7)
backtrack(counter);
counter++;
} // end while
System.out.println("Queens on board: " + counter);
printBoard();
for(int i = 0; i < row.length; i++)
System.out.println(column[i] + "/" + row[i]);
} // end method main
// Print elimination table
public static void printE()
{
for(int i[] : elimination) {
for(int j = 0; j < i.length; j++)
System.out.printf("%-3d", i[j]);
System.out.println();
} // end for
} // end printE
public static void printBoard()
{
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board.length; j++) {
if(board[i][j] && position[i][j])
System.out.print("o ");
else if(board[i][j])
System.out.print("x ");
else
System.out.print("% ");
} // end inner for
System.out.println();
} // end outer for
} // end method printBoard
// Write method to calculate how many squares are eliminated if queen is placed in that square
public static void fillElim()
{
// if any squares that could be eliminated already are eliminated, subtract 1
for(int i = 0; i < elimination.length; i++) {
for(int j = 0; j < elimination[i].length; j++) {
elimination[i][j] = openSquares(i, j);
} // end inner for
} // end outer for
} // end method fillElimination
// Number of squares eliminatable by placing queen in any given square
public static int openSquares(int row, int column)
{
// if square is already eliminated, it cannot be used
if(board[row][column])
return 0;
// total number of squares elimintable from any given square, count square itself
int total = 1 + openHorizontal(row) + openVertical(column) + openUpSlope(row, column) + openDownSlope(row, column);
return total;
} // end method openSquares
// Return number of open squares in a row
public static int openHorizontal(int row)
{
// total of row
int total = 0;
for(boolean b : board[row]) {
// if square is "true" (open), increment total open squares
if(!b)
total++;
} // end for
// return total not counting current square
return total - 1;
} // end method openHorizontal
// Return number of open squares in a column
public static int openVertical(int column)
{
// total of column
int total = 0;
// if square is "true" (open), increment total open squares
for(boolean[] b : board) {
// if square is "true" (open), increment total open square
if(!b[column])
total++;
} // end for
// return total not counting current square
return total - 1;
} // end method openVertical
// Return number of open squares in a column
public static int openDownSlope(int x, int y)
{
// total of downward-sloping diagonal
int total = 0;
// if square is "true" (open), increment total open squares
for(int i = 0; i < board.length; i++) {
// test all values before use to prevent array index errors
// all squares to the top right of the checking square
if(x+i >= 0 && x+i < board.length && y+i >= 0 && y+i < board.length) {
// else increment total
if(!board[x+i][y+i])
total++;
} // end if
// all squares to the bottom left of the checking square
if(x-i >= 0 && x-i < board.length && y-i >= 0 && y-i < board.length) {
// else increment total
if(!board[x-i][y-i])
total++;
} // end if
} // end for
// return total not counting current square
return total - 2;
} // end method openDownSlope
// Return number of open squares in a column
public static int openUpSlope(int x, int y)
{
// total of upward-sloping diagonal
int total = 0;
// if square is "true" (open), increment total open squares
for(int i = 0; i < board.length; i++) {
// test all values before use to prevent array index errors
// all squares to the top right of the checking square
if(x+i >= 0 && x+i < board.length && y-i >= 0 && y-i < board.length) {
// else increment total
if(!board[x+i][y-i])
total++;
} // end if
// all squares to the bottom left of the checking square
if(x-i >= 0 && x-i < board.length && y+i >= 0 && y+i < board.length) {
// else increment total
if(!board[x-i][y+i])
total++;
} // end if
} // end for
// return total not counting current square
return total - 2;
} // end method openDownSlope
// Are all squares on the board filled?
public static boolean isFull()
{
for(boolean b[] : board) {
for(boolean bb : b) {
if(!bb)
return false;
} // end inner for
} // end outer for
// if this point is reached, board is full
return true;
} // end method isFull
// Place a queen on the board
public static void placeQueen(int lastRow, int lastCol)
{
int[] bestSquare = bestMove(lastRow, lastCol);
System.out.println("&&&&&&");
for(int i = 0; i < row.length; i++)
System.out.println(row[i] + "/" + column[i]);
System.out.println("&&&&&&");
// assign queen to board
board[bestSquare[0]][bestSquare[1]] = true;
printBoard();
System.out.println();
// clear blocked squares from board
elimSquares(bestSquare[0], bestSquare[1]);
// reset elimination table
fillElim();
// store squares
for(int i = 0; i < row.length; i++) {
if(row[i] == -1) {
row[i] = bestSquare[0];
column[i] = bestSquare[1];
break;
} // end if
} // end for
// mark queen's position
position[bestSquare[0]][bestSquare[1]] = true;
printBoard();
} // end method placeQueen
// Return lowest number in elimination table
public static int[] bestMove(int lastRow, int lastCol)
{
// store lowest number - set to impossibly low
int low = 100;
// store coordinates
int[] move = {-1, -1};
// store limit of use
int limit;
if(lastRow == -1)
limit = 0;
else
limit = elimination[lastRow][lastCol];
// if lastRow is not -1, search for duplicate numbers after current square
if(lastRow != -1) {
// test for equal elimination numbers farther down on board
for(int i = lastRow; i < board.length; i++) {
for(int j = lastCol+1; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] == limit) {
move[0] = i;
move[1] = j;
return move;
}
} // end inner for
} // end outer for
} // end if
// test for any available squares left on board
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] > limit && elimination[i][j] < low)
low = elimination[i][j];
} // end inner for
} // end outer for
// get move coordinates for square, if needed to get best square after two backtracks
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] == low) {
move[0] = i;
move[1] = j;
return move;
} // end if
} // end inner for
} // end outer for
return move;
} // end method bestMove
public static void elimSquares(int row, int column)
{
// total number of squares elimintable from any given square, count square itself
elimHorizontal(row);
elimVertical(column);
elimUpSlope(row, column);
elimDownSlope(row, column);
} // end method openSquares
// Eliminate row
public static void elimHorizontal(int row)
{
// eliminate row
for (int i = 0; i < board[row].length; i++)
board[row][i] = true;
} // end method elimHorizontal
// Eliminate column
public static void elimVertical(int column)
{
// eliminate column
for(boolean[] b : board)
b[column] = true;
} // end method elimVertical
// Eliminate downward slope
public static void elimDownSlope(int x, int y)
{
// loop through downward slope
for(int i = 0; i < board.length; i++) {
// test all values before use to prevent array index errors
// eliminate all squares to the bottom right of the checking square
if(x+i >= 0 && x+i < board.length && y+i >= 0 && y+i < board.length)
board[x+i][y+i] = true;
// eliminate all squares to the top left of the checking square
if(x-i >= 0 && x-i < board.length && y-i >= 0 && y-i < board.length)
board[x-i][y-i] = true;
} // end for
} // end method elimDownSlope
// Eliminate upward slope
public static void elimUpSlope(int x, int y)
{
// loop through upward slope
for(int i = 0; i < board.length; i++) {
// test all values before use to prevent array index errors
// eliminate all squares to the bottom right of the checking square
if(x+i >= 0 && x+i < board.length && y-i >= 0 && y-i < board.length)
board[x+i][y-i] = true;
// eliminate all squares to the top left of the checking square
if(x-i >= 0 && x-i < board.length && y+i >= 0 && y+i < board.length)
board[x-i][y+i] = true;
} // end for
} // end method elimDownSlope
// If not found solution and board is full
public static void backtrack(int lastMove)
{
// store last move
int lastRow = row[lastMove];
int lastCol = column[lastMove];
// clear board
resetBoard();
// go back 1 move
goBack(lastMove);
// refill board
for(int i = 0; i < row.length; i++) {
// escape if out of bounds
if(row[i] == -1)
break;
// replace queens
board[row[i]][column[i]] = true;
// fill elimination table
elimSquares(row[i], column[i]);
} // end for
// while no open squares, go back one more row
// keep track of times looped
int counter = 0;
while(!openSpaces(lastRow, lastCol)) {
System.out.println("backtrack " + counter);
backtrack(lastMove-1);
counter++;
} // end while
// set queen in square
placeQueen(lastRow, lastCol);
} // end method backtrack
// Clear board
public static void resetBoard()
{
// clear board
for(boolean[] b : board)
for(int j = 0; j < b.length; j++)
b[j] = false;
} // end method resetBoard
// Go back 1 move
public static void goBack(int lastMove)
{
// remove queen from last position
position[row[lastMove]][column[lastMove]] = false;
// remove last move from table
row[lastMove] = -1;
column[lastMove] = -1;
} // end method goBack
// Return number of open, untested spaces on board
public static boolean openSpaces(int lastRow, int lastCol)
{
// store number of open, untested squares
int squares = 0;
// store limit of use
int limit = elimination[lastRow][lastCol];
// store next limit for use if no more squares at limit
int nextLimit = limit + 1;
// test for equal elimination numbers farther down on board
for(int i = lastRow; i < board.length; i++) {
for(int j = lastCol+1; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] == limit)
squares++;
} // end inner for
} // end outer for
// test for any available squares left on board
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] >= nextLimit)
squares++;
} // end inner for
} // end outer for
return squares != 0;
} // end method openSpaces
这调用方法goBack;方法placeQueen,调用方法bestMove;还有其他几个。这三种提到的方法也可能有错误,我不确定:
// Go back 1 move
public static void goBack(int lastMove)
{
// remove queen from last position
position[row[lastMove]][column[lastMove]] = false;
// remove last move from table
row[lastMove] = -1;
column[lastMove] = -1;
} // end method goBack
// Place a queen on the board
public static void placeQueen(int lastRow, int lastCol)
{
int[] bestSquare = bestMove(lastRow, lastCol);
System.out.println("&&&&&&");
for(int i = 0; i < row.length; i++)
System.out.println(row[i] + "/" + column[i]);
System.out.println("&&&&&&");
// assign queen to board
board[bestSquare[0]][bestSquare[1]] = true;
printBoard();
System.out.println();
// clear blocked squares from board
elimSquares(bestSquare[0], bestSquare[1]);
// reset elimination table
fillElim();
// store squares
for(int i = 0; i < row.length; i++) {
if(row[i] == -1) {
row[i] = bestSquare[0];
column[i] = bestSquare[1];
break;
} // end if
} // end for
// mark queen's position
position[bestSquare[0]][bestSquare[1]] = true;
printBoard();
} // end method placeQueen
// Return lowest number in elimination table
public static int[] bestMove(int lastRow, int lastCol)
{
// store lowest number - set to impossibly low
int low = 100;
// store coordinates
int[] move = {-1, -1};
// store limit of use
int limit;
if(lastRow == -1)
limit = 0;
else
limit = elimination[lastRow][lastCol];
// if lastRow is not -1, search for duplicate numbers after current square
if(lastRow != -1) {
// test for equal elimination numbers farther down on board
for(int i = lastRow; i < board.length; i++) {
for(int j = lastCol+1; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] == limit) {
move[0] = i;
move[1] = j;
return move;
}
} // end inner for
} // end outer for
} // end if
// test for any available squares left on board
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] > limit && elimination[i][j] < low)
low = elimination[i][j];
} // end inner for
} // end outer for
// get move coordinates for square, if needed to get best square after two backtracks
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < board[i].length; j++) {
if(!board[i][j] && elimination[i][j] == low) {
move[0] = i;
move[1] = j;
return move;
} // end if
} // end inner for
} // end outer for
return move;
} // end method bestMove
我认为placeQueen在回溯方法中以某种方式在回溯之前被调用。
P.S。这与https://stackoverflow.com/questions/20111154/use-elimination-heuristic-to-solve-eight-queens-puzzle不同。我在那里问我需要做什么;在这里我问为什么我的方法不起作用。
答案 0 :(得分:1)
有顺便说一句。一种解决女王问题的简单方法。 该程序将打印出所有92种解决方案。
public class Queens {
static int counter = 0;
static int[] pos = new int[8];
static void printBoard(){
for(int p: pos) {
for(int i = 0; i < p; i++) System.out.print(".");
System.out.print("Q");
for(int i = p+1; i < 8; i++) System.out.print(".");
System.out.println();
}
System.out.println();
}
static boolean threatened(int x, int y){
for (int i = 0; i < y; i++){
int d = y - i;
if(pos[i] == x || pos[i] == x - d || pos[i] == x + d) {
return true;
}
}
return false;
}
static void place(int y) {
for(int x = 0; x < pos.length ; x++){
if(!threatened(x, y)){
pos[y] = x;
if(y == 7){
printBoard();
counter++;
} else{
place(y + 1);
}
}
}
}
public static void main(String[] args){
place(0);
System.out.print("found " + counter + " solutions");
}
}