我正在尝试实现一种算法,将两个1和0位列表相乘作为二进制乘法的模拟。它应该返回一个类似的列表,但我很难建立在我已经拥有的东西上。一些帮助将不胜感激......
;;Function designed to accept two bit-list binary numbers (reverse order) and produce their product, a bitlist in reverse order.
;;Example: (multiply '(0 1 1 0 1) '(1 0 1)) should produce '(0 1 1 1 0 1 1)
(define (multiply x y)
(cond
;[(= null? y) 0]
[(zero? y) 0]
(#t (let ((z (multiply x (rest y )))) (cond
[(num_even? y) (cons 0 z)]
(#t (addWithCarry x (cons 0 z) 1)))))))
;This is to check if the current value of parameter x is the number 0
(define (zero? x)
(cond
((null? x) #t)
((=(first x) 1) #f)
(#t (zero? (rest x)))))
;This is to check if the current parameter x is 0 (even) or not.
(define (num_even? x)
(cond
[(null? x) #t]
[(=(first x) 0)#t]
[#t (num_even? (rest x))]))
;To add two binary numbers
(define(addWithCarry x y carry)
(cond
((and (null? x) (null? y)) (if (= carry 0) '( ) '(1)))
((null? x) (addWithCarry '(0) y carry))
((null? y) (addWithCarry x '(0) carry))
(#t (let ((bit1 (first x))
(bit2 (first y)))
(cond
((=(+ bit1 bit2 carry) 0) (cons 0 (addWithCarry (rest x)(rest y) 0)))
((=(+ bit1 bit2 carry) 1) (cons 1 (addWithCarry (rest x)(rest y) 0)))
((=(+ bit1 bit2 carry) 2) (cons 0 (addWithCarry (rest x)(rest y) 1)))
(#t (cons 1 (addWithCarry (rest x) (rest y) 1))))))))
答案 0 :(得分:1)
基于my previous answer for a base-10 multiplication,这是一个适用于二进制数的解决方案(按照正确的顺序):
(define base 2)
(define (car0 lst)
(if (empty? lst)
0
(car lst)))
(define (cdr0 lst)
(if (empty? lst)
empty
(cdr lst)))
(define (apa-add l1 l2) ; apa-add (see https://stackoverflow.com/a/19597007/1193075)
(let loop ((l1 (reverse l1))
(l2 (reverse l2))
(carry 0)
(res '()))
(if (and (null? l1) (null? l2) (= 0 carry))
res
(let* ((d1 (car0 l1))
(d2 (car0 l2))
(ad (+ d1 d2 carry))
(dn (modulo ad base)))
(loop (cdr0 l1)
(cdr0 l2)
(quotient (- ad dn) base)
(cons dn res))))))
(define (mult1 n lst) ; multiply a list by one digit
(let loop ((lst (reverse lst))
(carry 0)
(res '()))
(if (and (null? lst) (= 0 carry))
res
(let* ((c (car0 lst))
(m (+ (* n c) carry))
(m0 (modulo m base)))
(loop (cdr0 lst)
(quotient (- m m0) base)
(cons m0 res))))))
(define (apa-multi l1 l2) ; full multiplication
(let loop ((l2 (reverse l2))
(app '())
(res '()))
(if (null? l2)
res
(let* ((d2 (car l2))
(m (mult1 d2 l1))
(r (append m app)))
(loop (cdr l2)
(cons '0 app)
(apa-add r res))))))
这样
(apa-multi '(1 0 1 1 0) '(1 0 1))
=> '(1 1 0 1 1 1 0)