Dijkstra算法是否跟踪访问的节点以找到最短路径?

时间:2013-11-18 21:04:52

标签: java graph dijkstra breadth-first-search visited

我找到了Dijkstra algorithm O来查找加权图中两个节点之间的最短路径。 我看到的是代码没有跟踪被访问的节点。但它适用于我尝试的所有输入。我添加了一行代码来跟踪访问过的节点。它仍然可以正常工作。我在这段代码中已经注释掉了。那么是否要求访问节点?它是否有任何影响import java.util.PriorityQueue; import java.util.List; import java.util.ArrayList; import java.util.Collections; class Vertex implements Comparable<Vertex> { public final String name; public Edge[] adjacencies; public double minDistance = Double.POSITIVE_INFINITY; public Vertex previous; public Vertex(String argName) { name = argName; } public String toString() { return name; } public int compareTo(Vertex other) { return Double.compare(minDistance, other.minDistance); } } class Edge { public final Vertex target; public final double weight; public Edge(Vertex argTarget, double argWeight) { target = argTarget; weight = argWeight; } } public class Dijkstra { public static void computePaths(Vertex source) { source.minDistance = 0.; PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>(); //Set<Vertex> visited = new HashSet<Vertex>(); vertexQueue.add(source); while (!vertexQueue.isEmpty()) { Vertex u = vertexQueue.poll(); // Visit each edge exiting u for (Edge e : u.adjacencies) { Vertex v = e.target; double weight = e.weight; double distanceThroughU = u.minDistance + weight; //if (!visited.contains(u)){ if (distanceThroughU < v.minDistance) { vertexQueue.remove(v); v.minDistance = distanceThroughU ; v.previous = u; vertexQueue.add(v); visited.add(u) //} } } } } public static List<Vertex> getShortestPathTo(Vertex target) { List<Vertex> path = new ArrayList<Vertex>(); for (Vertex vertex = target; vertex != null; vertex = vertex.previous) path.add(vertex); Collections.reverse(path); return path; } public static void main(String[] args) { Vertex v0 = new Vertex("Redvile"); Vertex v1 = new Vertex("Blueville"); Vertex v2 = new Vertex("Greenville"); Vertex v3 = new Vertex("Orangeville"); Vertex v4 = new Vertex("Purpleville"); v0.adjacencies = new Edge[]{ new Edge(v1, 5), new Edge(v2, 10), new Edge(v3, 8) }; v1.adjacencies = new Edge[]{ new Edge(v0, 5), new Edge(v2, 3), new Edge(v4, 7) }; v2.adjacencies = new Edge[]{ new Edge(v0, 10), new Edge(v1, 3) }; v3.adjacencies = new Edge[]{ new Edge(v0, 8), new Edge(v4, 2) }; v4.adjacencies = new Edge[]{ new Edge(v1, 7), new Edge(v3, 2) }; Vertex[] vertices = { v0, v1, v2, v3, v4 }; computePaths(v0); for (Vertex v : vertices) { System.out.println("Distance to " + v + ": " + v.minDistance); List<Vertex> path = getShortestPathTo(v); System.out.println("Path: " + path); } } }

{{1}}

3 个答案:

答案 0 :(得分:4)

Dijkstra的算法不需要跟踪被访问的顶点,因为它优先考虑具有最短总路径的那些顶点。

对于未立即连接到起始节点的顶点,当算法启动时,它们被认为具有无限长的路径。访问顶点后,所有邻居的总距离都会根据到当前顶点的距离加上两者之间的旅行成本进行更新。

答案 1 :(得分:4)

代码本来可以更简单,但无论如何,Djikstra都很贪心,所以在每个节点,我们都试图找到最短路径的节点。除非存在负边缘,否则已经访问过的节点已经填充了最短路径,因此自然地,条件if(distanceThroughU&lt; v.minDistance)对于访问节点永远不会为真。

关于运行时复杂性,两种实现之间没有太大区别。

答案 2 :(得分:2)

任何注释行都不包含负责将Vertex 对象添加到已访问 Set的代码。它看起来像:

(!visited.contains(u))

总是如此:)

除此之外,您不需要知道访问过的节点就可以使用算法。