智能方式生成排列和String的组合

时间:2013-11-15 03:37:50

标签: java algorithm combinations permutation

String database[] = {'a', 'b', 'c'};

我想基于给定的database生成以下字符串序列。

a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc
aaa
...

我只能想到一个非常“虚拟”的解决方案。

public class JavaApplication21 {

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args) {
        char[] database = {'a', 'b', 'c'};

        String query = "a";
        StringBuilder query_sb = new StringBuilder(query);
        for (int a = 0; a < database.length; a++) {
            query_sb.setCharAt(0, database[a]);
            query = query_sb.toString();                    
            System.out.println(query);            
        }

        query = "aa";
        query_sb = new StringBuilder(query);
        for (int a = 0; a < database.length; a++) {
            query_sb.setCharAt(0, database[a]);    
            for (int b = 0; b < database.length; b++) {    
                query_sb.setCharAt(1, database[b]);    
                query = query_sb.toString();                    
                System.out.println(query);
            }
        }

        query = "aaa";
        query_sb = new StringBuilder(query);
        for (int a = 0; a < database.length; a++) {
            query_sb.setCharAt(0, database[a]);    
            for (int b = 0; b < database.length; b++) {    
                query_sb.setCharAt(1, database[b]);    
                for (int c = 0; c < database.length; c++) {                    
                    query_sb.setCharAt(2, database[c]);                        
                    query = query_sb.toString();                    
                    System.out.println(query);
                }
            }
        }
    }
}

解决方案非常愚蠢。

意义上说它不具有可扩展性
  1. 如果我增加database
  2. 的尺寸怎么办?
  3. 如果我的最终目标打印字符串长度需要为N?
  4. ,该怎么办?

    是否有智能代码可以以非常智能的方式生成可扩展的排列和组合字符串?

7 个答案:

答案 0 :(得分:16)

您应该查看以下答案:Getting every possible permutation of a string or combination including repeated characters in Java

获取此代码:

public static String[] getAllLists(String[] elements, int lengthOfList)
{

    //lists of length 1 are just the original elements
    if(lengthOfList == 1) return elements; 
    else {
        //initialize our returned list with the number of elements calculated above
        String[] allLists = new String[(int)Math.pow(elements.length, lengthOfList)];

        //the recursion--get all lists of length 3, length 2, all the way up to 1
        String[] allSublists = getAllLists(elements, lengthOfList - 1);

        //append the sublists to each element
        int arrayIndex = 0;

        for(int i = 0; i < elements.length; i++){
            for(int j = 0; j < allSublists.length; j++){
                //add the newly appended combination to the list
                allLists[arrayIndex] = elements[i] + allSublists[j];
                arrayIndex++;
            }
        }
        return allLists;
    }
}

public static void main(String[] args){
    String[] database = {"a","b","c"};
    for(int i=1; i<=database.length; i++){
        String[] result = getAllLists(database, i);
        for(int j=0; j<result.length; j++){
            System.out.println(result[j]);
        }
    }
}

虽然可以进一步改进内存,但是由于此解决方案首先生成所有内存解决方案(数组),然后才能打印出来。但这个想法是一样的,即使用递归算法。

答案 1 :(得分:3)

这有点像用二进制计数:

  • 001
  • 010
  • 011
  • 100
  • 101
  • ...

我的第一直觉是使用二进制计数器作为字符的“位图”来生成可能的值。但是,这里有相关问题的几个很好的答案建议使用递归。参见

答案 2 :(得分:2)

您的排列生成器的Java实现: -

public class Permutations {


    public static void permGen(char[] s,int i,int k,char[] buff) {
        if(i<k) {
            for(int j=0;j<s.length;j++) {

                buff[i] = s[j];
                permGen(s,i+1,k,buff);
            }
        }       
        else {

         System.out.println(String.valueOf(buff)); 

        }

    }

    public static void main(String[] args) {
        char[] database = {'a', 'b', 'c'};
        char[] buff = new char[database.length];
        int k = database.length;
        for(int i=1;i<=k;i++) {
            permGen(database,0,i,buff);
        }

}

}

答案 3 :(得分:0)

好的,所以排列的最佳解决方案是递归。假设你在字符串中有n个不同的字母。这将产生n个子问题,每个问题以每个唯一字母开头的一组排列。创建一个方法permutationsWithPrefix(String thePrefix, String theString),它将解决这些个别问题。创建另一个方法listPermutations(String theString),实现类似于

void permutationsWithPrefix(String thePrefix, String theString) {
   if ( !theString.length ) println(thePrefix + theString);
   for(int i = 0; i < theString.length; i ++ ) {
      char c = theString.charAt(i);
      String workingOn = theString.subString(0, i) + theString.subString(i+1);   
      permutationsWithPrefix(prefix + c, workingOn);
   }
} 

void listPermutations(String theString) {
   permutationsWithPrefix("", theString);
}

答案 4 :(得分:0)

我把这个问题作为面试问题之一。以下是我使用递归为此问题实现的解决方案。

public class PasswordCracker {

private List<String> doComputations(String inputString) {

    List<String> totalList =  new ArrayList<String>();
    for (int i = 1; i <= inputString.length(); i++) {

        totalList.addAll(getCombinationsPerLength(inputString, i));
    }
    return totalList;

}

private ArrayList<String> getCombinationsPerLength(
        String inputString, int i) {

    ArrayList<String> combinations = new ArrayList<String>();

    if (i == 1) {

        char [] charArray = inputString.toCharArray();
        for (int j = 0; j < charArray.length; j++) {
            combinations.add(((Character)charArray[j]).toString());
        }
        return combinations;
    }
    for (int j = 0; j < inputString.length(); j++) {

        ArrayList<String> combs = getCombinationsPerLength(inputString, i-1);
        for (String string : combs) {
            combinations.add(inputString.charAt(j) + string);
        }
    }

    return combinations;
}
public static void main(String args[]) {

    String testString = "abc";
    PasswordCracker crackerTest = new PasswordCracker();
    System.out.println(crackerTest.doComputations(testString));

}
}

答案 5 :(得分:0)

对于寻找非递归选项的任何人,这里有一个数字排列的示例(可以很容易地适应numberOfAgents0是列数,数字集是{{1转到numberOfActions

    int numberOfAgents=5;
    int numberOfActions = 8;
    byte[][]combinations = new byte[(int)Math.pow(numberOfActions,numberOfAgents)][numberOfAgents];

    // do each column separately
    for (byte j = 0; j < numberOfAgents; j++) {
        // for this column, repeat each option in the set 'reps' times
        int reps = (int) Math.pow(numberOfActions, j);

        // for each column, repeat the whole set of options until we reach the end
        int counter=0;
        while(counter<combinations.length) {
            // for each option
            for (byte i = 0; i < numberOfActions; i++) {
                // save each option 'reps' times
                for (int k = 0; k < reps; k++)
                    combinations[counter + i * reps + k][j] = i;
            }
            // increase counter by 'reps' times amount of actions
            counter+=reps*numberOfActions;
        }
    }

    // print
    for(byte[] setOfActions : combinations) {
        for (byte b : setOfActions)
            System.out.print(b);
        System.out.println();
    }

答案 6 :(得分:0)

Collections.reverse(arrayList);