使用Pandas Dataframe运行OLS回归

时间:2013-11-15 00:47:00

标签: python pandas scikit-learn regression statsmodels

我有一个pandas数据框,我希望能够从B列和C列中的值预测A列的值。这是一个玩具示例:

import pandas as pd
df = pd.DataFrame({"A": [10,20,30,40,50], 
                   "B": [20, 30, 10, 40, 50], 
                   "C": [32, 234, 23, 23, 42523]})

理想情况下,我会有类似ols(A ~ B + C, data = df)的内容,但当我查看scikit-learn等算法库中的examples时,它似乎会将数据提供给带有行列表的模型列。这将要求我将数据重新格式化为列表中的列表,这似乎首先打败了使用pandas的目的。在pandas数据框中对数据运行OLS回归(或更普遍的机器学习算法)的最pythonic方法是什么?

6 个答案:

答案 0 :(得分:132)

我认为你几乎可以完全按照你认为理想的做法,使用statsmodels一个pandas'pandas'版本0.20.0之前的可选依赖项之一(它用于pandas.stats中的一些事情。)

>>> import pandas as pd
>>> import statsmodels.formula.api as sm
>>> df = pd.DataFrame({"A": [10,20,30,40,50], "B": [20, 30, 10, 40, 50], "C": [32, 234, 23, 23, 42523]})
>>> result = sm.ols(formula="A ~ B + C", data=df).fit()
>>> print(result.params)
Intercept    14.952480
B             0.401182
C             0.000352
dtype: float64
>>> print(result.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      A   R-squared:                       0.579
Model:                            OLS   Adj. R-squared:                  0.158
Method:                 Least Squares   F-statistic:                     1.375
Date:                Thu, 14 Nov 2013   Prob (F-statistic):              0.421
Time:                        20:04:30   Log-Likelihood:                -18.178
No. Observations:                   5   AIC:                             42.36
Df Residuals:                       2   BIC:                             41.19
Df Model:                           2                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept     14.9525     17.764      0.842      0.489       -61.481    91.386
B              0.4012      0.650      0.617      0.600        -2.394     3.197
C              0.0004      0.001      0.650      0.583        -0.002     0.003
==============================================================================
Omnibus:                          nan   Durbin-Watson:                   1.061
Prob(Omnibus):                    nan   Jarque-Bera (JB):                0.498
Skew:                          -0.123   Prob(JB):                        0.780
Kurtosis:                       1.474   Cond. No.                     5.21e+04
==============================================================================

Warnings:
[1] The condition number is large, 5.21e+04. This might indicate that there are
strong multicollinearity or other numerical problems.

答案 1 :(得分:67)

注意: pandas.stats has been removed与0.20.0


可以使用pandas.stats.ols

执行此操作
>>> from pandas.stats.api import ols
>>> df = pd.DataFrame({"A": [10,20,30,40,50], "B": [20, 30, 10, 40, 50], "C": [32, 234, 23, 23, 42523]})
>>> res = ols(y=df['A'], x=df[['B','C']])
>>> res
-------------------------Summary of Regression Analysis-------------------------

Formula: Y ~ <B> + <C> + <intercept>

Number of Observations:         5
Number of Degrees of Freedom:   3

R-squared:         0.5789
Adj R-squared:     0.1577

Rmse:             14.5108

F-stat (2, 2):     1.3746, p-value:     0.4211

Degrees of Freedom: model 2, resid 2

-----------------------Summary of Estimated Coefficients------------------------
      Variable       Coef    Std Err     t-stat    p-value    CI 2.5%   CI 97.5%
--------------------------------------------------------------------------------
             B     0.4012     0.6497       0.62     0.5999    -0.8723     1.6746
             C     0.0004     0.0005       0.65     0.5826    -0.0007     0.0014
     intercept    14.9525    17.7643       0.84     0.4886   -19.8655    49.7705
---------------------------------End of Summary---------------------------------

请注意,您需要安装statsmodels软件包,它由pandas.stats.ols函数在内部使用。

答案 2 :(得分:24)

我不知道这是sklearn还是pandas中的新内容,但我能够将数据框直接传递给sklearn而无需将数据框转换为numpy数组或任何其他数据类型。

from sklearn import linear_model

reg = linear_model.LinearRegression()
reg.fit(df[['B', 'C']], df['A'])

>>> reg.coef_
array([  4.01182386e-01,   3.51587361e-04])

答案 3 :(得分:15)

  

这需要我将数据重新格式化为列表中的列表,这似乎首先打败了使用pandas的目的。

不,不,只需转换为NumPy数组:

>>> data = np.asarray(df)

这需要花费一些时间,因为它只会在您的数据上创建视图。然后把它喂给scikit-learn:

>>> from sklearn.linear_model import LinearRegression
>>> lr = LinearRegression()
>>> X, y = data[:, 1:], data[:, 0]
>>> lr.fit(X, y)
LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
>>> lr.coef_
array([  4.01182386e-01,   3.51587361e-04])
>>> lr.intercept_
14.952479503953672

答案 4 :(得分:3)

Statsmodels可以使用直接指向熊猫数据框的列引用来构建OLS model

又甜又甜:

model = sm.OLS(df[y], df[x]).fit()


代码详细信息和回归摘要:

# imports
import pandas as pd
import statsmodels.api as sm
import numpy as np

# data
np.random.seed(123)
df = pd.DataFrame(np.random.randint(0,100,size=(100, 3)), columns=list('ABC'))

# assign dependent and independent / explanatory variables
variables = list(df.columns)
y = 'A'
x = [var for var in variables if var not in y ]

# Ordinary least squares regression
model_Simple = sm.OLS(df[y], df[x]).fit()

# Add a constant term like so:
model = sm.OLS(df[y], sm.add_constant(df[x])).fit()

model.summary()

输出:

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      A   R-squared:                       0.019
Model:                            OLS   Adj. R-squared:                 -0.001
Method:                 Least Squares   F-statistic:                    0.9409
Date:                Thu, 14 Feb 2019   Prob (F-statistic):              0.394
Time:                        08:35:04   Log-Likelihood:                -484.49
No. Observations:                 100   AIC:                             975.0
Df Residuals:                      97   BIC:                             982.8
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const         43.4801      8.809      4.936      0.000      25.996      60.964
B              0.1241      0.105      1.188      0.238      -0.083       0.332
C             -0.0752      0.110     -0.681      0.497      -0.294       0.144
==============================================================================
Omnibus:                       50.990   Durbin-Watson:                   2.013
Prob(Omnibus):                  0.000   Jarque-Bera (JB):                6.905
Skew:                           0.032   Prob(JB):                       0.0317
Kurtosis:                       1.714   Cond. No.                         231.
==============================================================================

如何直接获取R平方,系数和p值:

# commands:
model.params
model.pvalues
model.rsquared

# demo:
In[1]: 
model.params
Out[1]:
const    43.480106
B         0.124130
C        -0.075156
dtype: float64

In[2]: 
model.pvalues
Out[2]: 
const    0.000003
B        0.237924
C        0.497400
dtype: float64

Out[3]:
model.rsquared
Out[2]:
0.0190

答案 5 :(得分:0)

B 在统计上不显着。数据无法从中得出推论。 C 确实影响 B 的概率

 df = pd.DataFrame({"A": [10,20,30,40,50], "B": [20, 30, 10, 40, 50], "C": [32, 234, 23, 23, 42523]})

 avg_c=df['C'].mean()
 sumC=df['C'].apply(lambda x: x if x<avg_c else 0).sum()
 countC=df['C'].apply(lambda x: 1 if x<avg_c else None).count()
 avg_c2=sumC/countC
 df['C']=df['C'].apply(lambda x: avg_c2 if x >avg_c else x)
 
 print(df)

 model_ols = smf.ols("A ~ B+C",data=df).fit()

 print(model_ols.summary())

 df[['B','C']].plot()
 plt.show()


 df2=pd.DataFrame()
 df2['B']=np.linspace(10,50,10)
 df2['C']=30

 df3=pd.DataFrame()
 df3['B']=np.linspace(10,50,10)
 df3['C']=100

 predB=model_ols.predict(df2)
 predC=model_ols.predict(df3)
 plt.plot(df2['B'],predB,label='predict B C=30')
 plt.plot(df3['B'],predC,label='predict B C=100')
 plt.legend()
 plt.show()

 print("A change in the probability of C affects the probability of B")

 intercept=model_ols.params.loc['Intercept']
 B_slope=model_ols.params.loc['B']
 C_slope=model_ols.params.loc['C']
 #Intercept    11.874252
 #B             0.760859
 #C            -0.060257

 print("Intercept {}\n B slope{}\n C    slope{}\n".format(intercept,B_slope,C_slope))


 #lower_conf,upper_conf=np.exp(model_ols.conf_int())
 #print(lower_conf,upper_conf)
 #print((1-(lower_conf/upper_conf))*100)

 model_cov=model_ols.cov_params()
 std_errorB = np.sqrt(model_cov.loc['B', 'B'])
 std_errorC = np.sqrt(model_cov.loc['C', 'C'])
 print('SE: ', round(std_errorB, 4),round(std_errorC, 4))
 #check for statistically significant
 print("B z value {} C z value {}".format((B_slope/std_errorB),(C_slope/std_errorC)))
 print("B feature is more statistically significant than C")


 Output:

 A change in the probability of C affects the probability of B
 Intercept 11.874251554067563
 B slope0.7608594144571961
 C slope-0.060256845997223814

 Standard Error:  0.4519 0.0793
 B z value 1.683510336937001 C z value -0.7601036314930376
 B feature is more statistically significant than C

 z>2 is statistically significant