Divide& Conquer(D& C)解决方案和用于矩阵乘法的Naive解决方案使用C编程语言“就地”实现。所以根本没有动态内存分配。
正如我们已经了解了两种解决方案,它们实际上具有相同的时间复杂度,即O(n ^ 3)。现在它们共享相同的空间复杂性,因为它们都是就地实现的。那怎么可能比另一个快得多?
使用clock_gettime获取时间。
在Windows 7的核心i7笔记本电脑上使用Cygwin,D& C解决方案的运行速度比Naive解决方案(删除冗余日志)的速度快得多:
编辑:
“algo0”表示朴素解,而“algo1”表示D& C 溶液
“len”表示宽度&矩阵的高度。矩阵是 NxN矩阵。
“00:00:00:000:003:421”表示: “小时:分钟:秒:毫秒:微秒:纳秒”。
[alg0]time cost[0, len=00000002]: 00:00:00:000:003:421 (malloc_cnt=0)
[alg1]time cost[0, len=00000002]: 00:00:00:000:000:855 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[1, len=00000004]: 00:00:00:000:001:711 (malloc_cnt=0)
[alg1]time cost[1, len=00000004]: 00:00:00:000:001:711 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[2, len=00000008]: 00:00:00:000:009:408 (malloc_cnt=0)
[alg1]time cost[2, len=00000008]: 00:00:00:000:008:553 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[3, len=00000016]: 00:00:00:000:070:134 (malloc_cnt=0)
[alg1]time cost[3, len=00000016]: 00:00:00:000:065:858 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[4, len=00000032]: 00:00:00:000:564:066 (malloc_cnt=0)
[alg1]time cost[4, len=00000032]: 00:00:00:000:520:873 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[5, len=00000064]: 00:00:00:004:667:337 (malloc_cnt=0)
[alg1]time cost[5, len=00000064]: 00:00:00:004:340:188 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[6, len=00000128]: 00:00:00:009:662:680 (malloc_cnt=0)
[alg1]time cost[6, len=00000128]: 00:00:00:008:139:403 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[7, len=00000256]: 00:00:00:080:031:116 (malloc_cnt=0)
[alg1]time cost[7, len=00000256]: 00:00:00:065:395:329 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[8, len=00000512]: 00:00:00:836:392:576 (malloc_cnt=0)
[alg1]time cost[8, len=00000512]: 00:00:00:533:799:924 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[9, len=00001024]: 00:00:09:942:086:780 (malloc_cnt=0)
[alg1]time cost[9, len=00001024]: 00:00:04:307:021:362 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[10, len=00002048]: 00:02:53:413:046:992 (malloc_cnt=0)
[alg1]time cost[10, len=00002048]: 00:00:35:588:289:832 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[11, len=00004096]: 00:25:46:154:930:041 (malloc_cnt=0)
[alg1]time cost[11, len=00004096]: 00:04:38:196:205:661 (malloc_cnt=0)
即使在只有一个ARM内核的Raspberry Pi上,结果也是类似的(同样,冗余数据被删除):
[alg0]time cost[0, len=00000002]: 00:00:00:000:005:999 (malloc_cnt=0)
[alg1]time cost[0, len=00000002]: 00:00:00:000:051:997 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[1, len=00000004]: 00:00:00:000:004:999 (malloc_cnt=0)
[alg1]time cost[1, len=00000004]: 00:00:00:000:008:000 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[2, len=00000008]: 00:00:00:000:014:999 (malloc_cnt=0)
[alg1]time cost[2, len=00000008]: 00:00:00:000:023:999 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[3, len=00000016]: 00:00:00:000:077:996 (malloc_cnt=0)
[alg1]time cost[3, len=00000016]: 00:00:00:000:157:991 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[4, len=00000032]: 00:00:00:000:559:972 (malloc_cnt=0)
[alg1]time cost[4, len=00000032]: 00:00:00:001:248:936 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[5, len=00000064]: 00:00:00:005:862:700 (malloc_cnt=0)
[alg1]time cost[5, len=00000064]: 00:00:00:010:739:450 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[6, len=00000128]: 00:00:00:169:060:336 (malloc_cnt=0)
[alg1]time cost[6, len=00000128]: 00:00:00:090:290:373 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[7, len=00000256]: 00:00:03:207:909:599 (malloc_cnt=0)
[alg1]time cost[7, len=00000256]: 00:00:00:771:870:443 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[8, len=00000512]: 00:00:35:725:494:551 (malloc_cnt=0)
[alg1]time cost[8, len=00000512]: 00:00:08:139:712:988 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[9, len=00001024]: 00:06:29:762:101:314 (malloc_cnt=0)
[alg1]time cost[9, len=00001024]: 00:01:50:964:568:907 (malloc_cnt=0)
------------------------------------------------------
[alg0]time cost[10, len=00002048]: 00:52:03:950:717:474 (malloc_cnt=0)
[alg1]time cost[10, len=00002048]: 00:14:19:222:020:444 (malloc_cnt=0)
我的第一个猜测是它必须由GCC完成一些优化。但到底是怎么回事?
以下是Naive解决方案和D& C解决方案的代码。 天真的解决方案:
void ClassicalMulti(int const * const mat1,
int const * const mat2,
int * const matrix,
const int n) {
if (!mat1 || !mat2 || n<=0) {
printf("ClassicalMulti: Invalid Input\n");
return;
}
int cnt, row, col;
for (row=0;row<n;++row) {
for (col=0;col<n;++col) {
for (cnt=0;cnt<n;++cnt) {
matrix[row*n+col] += mat1[row*n+cnt] * mat2[cnt*n+col];
}
}
}
}
分而治之解决方案:
void DCMulti(int const * const mat1,
int const * const mat2,
int * const matrix,
const int p1,
const int p2,
const int pn,
const int n) {
if (!mat1 || !mat2 || !matrix || n<2 || p1<0 || p2 <0 || pn<2) {
printf("DCMulti: Invalid Input\n");
return;
}
if (pn == 2) {
int pos = (p1/n)*n + p2%n;
matrix[pos] += mat1[p1]*mat2[p2] + mat1[p1+1]*mat2[p2+n];
matrix[pos+1] += mat1[p1]*mat2[p2+1] + mat1[p1+1]*mat2[p2+1+n];
matrix[pos+n] += mat1[p1+n]*mat2[p2] + mat1[p1+1+n]*mat2[p2+n];
matrix[pos+1+n] += mat1[p1+n]*mat2[p2+1] + mat1[p1+1+n]*mat2[p2+1+n];
} else {
int a = p1;
int b = p1 + pn/2;
int c = p1 + pn*n/2;
int d = p1 + pn*(n+1)/2;
int e = p2;
int f = p2 + pn/2;
int g = p2 + pn*n/2;
int h = p2 + pn*(n+1)/2;
DCMulti(mat1, mat2, matrix, a, e, pn/2, n); // a*e
DCMulti(mat1, mat2, matrix, b, g, pn/2, n); // b*g
DCMulti(mat1, mat2, matrix, a, f, pn/2, n); // a*f
DCMulti(mat1, mat2, matrix, b, h, pn/2, n); // b*h
DCMulti(mat1, mat2, matrix, c, e, pn/2, n); // c*e
DCMulti(mat1, mat2, matrix, d, g, pn/2, n); // d*g
DCMulti(mat1, mat2, matrix, c, f, pn/2, n); // c*f
DCMulti(mat1, mat2, matrix, d, h, pn/2, n); // d*h
}
}
答案 0 :(得分:6)
这两种方法的区别仅在于内存访问模式。即缓存局部性;对于大型矩阵,尤其是行竞争相同的高速缓存行并且导致对高速缓存未命中的越来越大的惩罚。最后,D&amp; C -strategy得到了回报,尽管全局更好的方法是将问题分成8x8块 - 一种称为loop tiling的技术。 (毫不奇怪,矩阵乘法在维基百科文章中作为拱形示例呈现......)
答案 1 :(得分:2)
有很多不同的方法可以进行天真矩阵乘法。有些比其他人快得多。
在执行您正在执行的操作之前,您可能会尝试转置第二个矩阵。 Aki Suikhonen正确地指出,平铺可能是有益的。您可能尝试的另一件事是“打破巨大的加载链” - 内循环的每次迭代都会在同一位置添加一个数字。 CPU可能会消除几乎所有的负载,但它仍然必须等待上一次添加完成才能开始下一个负载。尝试使用多个累加器并在最后添加它们。您可能希望展开内部循环以使代码更容易编码。