我需要解决具有复杂初始值的复杂域定义的ODE系统。 scipy.integrate.odeint不适用于复杂系统。 我强调在实部和虚部切割我的系统并分别求解,但我的ODE系统的rhs涉及因变量本身和它们的复共轭之间的产物。 哇,我这样做吗?这是我的代码,我尝试在Re和Im部分中破坏RHS,但我不认为解决方案是否相同,因为复杂数字之间的内部产品我不会打破它。 在我的脚本中,u1是一个(非常)长的复杂函数,比如u1(Lm)= f_real(Lm)+ 1j * f_imag(Lm)。
from numpy import *
from scipy import integrate
def cj(z): return z.conjugate()
def dydt(y, t=0):
# Notation
# Dependent Variables
theta1 = y[0]
theta3 = y[1]
Lm = y[2]
u11 = u1(Lm)
u13 = u1(3*Lm)
zeta1 = -2*E*u11*theta1
zeta3 = -2*E*3*u13*theta3
# Coefficients
A0 = theta1*cj(zeta1) + 3*theta3*cj(zeta3)
A2 = -zeta1*theta1 + 3*cj(zeta1)*theta3 + zeta3*cj(theta1)
A4 = -theta1*zeta3 - 3*zeta1*theta3
A6 = -3*theta3*zeta3
A = - (A2/2 + A4/4 + A6/6)
# RHS vector components
dy1dt = Lm**2 * (theta1*(A - cj(A)) - cj(theta1)*A2/2
- 3/2*theta3*cj(A2)
- 3/4*cj(theta3)*A4
- zeta1)
dy2dt = Lm**2 * (3*theta3*(A - cj(A)) - theta1*A2/2
- cj(theta1)*A4/4
- 1/2*cj(theta3)*A6
- 3*zeta3)
dy3dt = Lm**3 * (A0 + cj(A0))
return array([dy1dt, dy2dt, dy3dt])
t = linspace(0, 10000, 100) # Integration time-step
ry0 = array([0.001, 0, 0.1]) # Re(initial condition)
iy0 = array([0.0, 0.0, 0.0]) # Im(initial condition)
y0 = ry0 + 1j*iy0 # Complex Initial Condition
def rdydt(y, t=0): # Re(RHS)
return dydt(y, t).real
def idydt(y, t=0): # Im(RHS)
return dydt(y, t).imag
ry, rinfodict = integrate.odeint(rdydt, y0, t, full_output=True)
iy, iinfodict = integrate.odeint(idydt, y0, t, full_output=True)
我得到的错误就是这个 TypeError:数组无法安全地转换为所需类型 odepack.error:函数调用的结果不是正确的数组 浮动。
答案 0 :(得分:8)
正如您所发现的,odeint
不处理复值微分方程,但有scipy.integrate.complex_ode
。 complex_ode
是一个便利函数,负责将n
复方程的系统转换为2*n
实方程组。 (注意用于定义odeint
和ode
方程的函数的签名中的差异。odeint
期望f(t, y, *args)
而ode
(和{{1}期待complex_ode
。)
可以为f(y, t, *args)
创建类似的便利功能。在以下代码中,odeint
是一个函数,用于处理复杂系统到实际系统的转换,并使用odeintz
解决它。该代码包括解决复杂系统的示例。它还显示了如何将该系统“手动”转换为真实系统并使用odeint
解决。但是对于一个大型系统来说,这是一个单调且容易出错的过程;使用复杂的求解器肯定是一种更为理智的方法。
odeint
这是剧本生成的情节:
更新
此代码已经显着扩展为一个名为import numpy as np
from scipy.integrate import odeint
def odeintz(func, z0, t, **kwargs):
"""An odeint-like function for complex valued differential equations."""
# Disallow Jacobian-related arguments.
_unsupported_odeint_args = ['Dfun', 'col_deriv', 'ml', 'mu']
bad_args = [arg for arg in kwargs if arg in _unsupported_odeint_args]
if len(bad_args) > 0:
raise ValueError("The odeint argument %r is not supported by "
"odeintz." % (bad_args[0],))
# Make sure z0 is a numpy array of type np.complex128.
z0 = np.array(z0, dtype=np.complex128, ndmin=1)
def realfunc(x, t, *args):
z = x.view(np.complex128)
dzdt = func(z, t, *args)
# func might return a python list, so convert its return
# value to an array with type np.complex128, and then return
# a np.float64 view of that array.
return np.asarray(dzdt, dtype=np.complex128).view(np.float64)
result = odeint(realfunc, z0.view(np.float64), t, **kwargs)
if kwargs.get('full_output', False):
z = result[0].view(np.complex128)
infodict = result[1]
return z, infodict
else:
z = result.view(np.complex128)
return z
if __name__ == "__main__":
# Generate a solution to:
# dz1/dt = -z1 * (K - z2)
# dz2/dt = L - z2
# K and L are fixed parameters. z1(t) and z2(t) are complex-
# valued functions of t.
# Define the right-hand-side of the differential equation.
def zfunc(z, t, K, L):
z1, z2 = z
return [-z1 * (K - z2), L - z2]
# Set up the inputs and call odeintz to solve the system.
z0 = np.array([1+2j, 3+4j])
t = np.linspace(0, 4, 101)
K = 3
L = 1
z, infodict = odeintz(zfunc, z0, t, args=(K,L), full_output=True)
# For comparison, here is how the complex system can be converted
# to a real system. The real and imaginary parts are used to
# write a system of four coupled equations. The formulas for
# the complex right-hand-sides are
# -z1 * (K - z2) = -(x1 + i*y1) * (K - (x2 + i*y2))
# = (-x1 - i*y1) * (K - x2 + i(-y2))
# = -x1 * (K - x2) - y1*y2 + i*(-y1*(K - x2) + x1*y2)
# and
# L - z2 = L - (x2 + i*y2)
# = (L - x2) + i*(-y2)
def func(r, t, K, L):
x1, y1, x2, y2 = r
dx1dt = -x1 * (K - x2) - y1*y2
dy1dt = -y1 * (K - x2) + x1*y2
dx2dt = L - x2
dy2dt = -y2
return [dx1dt, dy1dt, dx2dt, dy2dt]
# Use regular odeint to solve the real system.
r, infodict = odeint(func, z0.view(np.float64), t, args=(K,L), full_output=True)
# Compare the two solutions. They should be the same. (As usual for
# floating point calculations, there could be a small difference.)
delta_max = np.abs(z.view(np.float64) - r).max()
print "Maximum difference between the complex and real versions is", delta_max
# Plot the real and imaginary parts of the complex solution.
import matplotlib.pyplot as plt
plt.clf()
plt.plot(t, z[:,0].real, label='z1.real')
plt.plot(t, z[:,0].imag, label='z1.imag')
plt.plot(t, z[:,1].real, label='z2.real')
plt.plot(t, z[:,1].imag, label='z2.imag')
plt.xlabel('t')
plt.grid(True)
plt.legend(loc='best')
plt.show()
的函数,用于处理复杂变量和矩阵方程。新函数可以在github上找到:https://github.com/WarrenWeckesser/odeintw
答案 1 :(得分:3)
我想我自己找到了解决方案。我发布它,因为任何人都会觉得它很有用。 似乎odeint无法处理复数。不管怎样,scipy.integrate.ode都可以 通过使用'zvode'集成方法。