将pandas DataFrame转换为嵌套的dict

时间:2013-11-05 20:17:41

标签: python pandas

我正在寻找将DataFrame转换为嵌套字典的通用方法

这是一个示例数据框

    name    v1  v2  v3
0   A       A1  A11 1
1   A       A2  A12 2
2   B       B1  B12 3
3   C       C1  C11 4
4   B       B2  B21 5
5   A       A2  A21 6

列数可能不同,列名称也不同。

像这样:

{
'A' : { 
    'A1' : { 'A11' : 1 }
    'A2' : { 'A12' : 2 , 'A21' : 6 }} , 
'B' : { 
    'B1' : { 'B12' : 3 } } , 
'C' : { 
    'C1' : { 'C11' : 4}}
}

实现这一目标的最佳方法是什么?

我得到的最接近的是zip函数但是没有设法让它适用于多个级别(两列)。

5 个答案:

答案 0 :(得分:31)

我不明白为什么你的词典中没有B2。我也不确定在重复列值的情况下你想要发生什么(除了最后一个,我的意思是每一个。)假设第一个是疏忽,我们可以使用递归:

def recur_dictify(frame):
    if len(frame.columns) == 1:
        if frame.values.size == 1: return frame.values[0][0]
        return frame.values.squeeze()
    grouped = frame.groupby(frame.columns[0])
    d = {k: recur_dictify(g.ix[:,1:]) for k,g in grouped}
    return d

产生

>>> df
  name  v1   v2  v3
0    A  A1  A11   1
1    A  A2  A12   2
2    B  B1  B12   3
3    C  C1  C11   4
4    B  B2  B21   5
5    A  A2  A21   6
>>> pprint.pprint(recur_dictify(df))
{'A': {'A1': {'A11': 1}, 'A2': {'A12': 2, 'A21': 6}},
 'B': {'B1': {'B12': 3}, 'B2': {'B21': 5}},
 'C': {'C1': {'C11': 4}}}

但是,使用非熊猫方法可能更简单:

def retro_dictify(frame):
    d = {}
    for row in frame.values:
        here = d
        for elem in row[:-2]:
            if elem not in here:
                here[elem] = {}
            here = here[elem]
        here[row[-2]] = row[-1]
    return d

答案 1 :(得分:5)

您可以轻松地重建字典

>>> result = {}
>>> for lst in df.values:
...     leaf = result
...     for path in lst[:-2]:
...        leaf = leaf.setdefault(path, {})
...     leaf.setdefault(lst[-2], list()).append(lst[-1])
...
>>> result
{'A': {'A1': {'A11': [1]}, 'A2': {'A21': [6], 'A12': [2]}}, 'C': {'C1': {'C11': [4]}}, 'B':  {'B1': {'B12': [3]}, 'B2': {'B21': [5]}}}

如果您确定您的树叶不会重叠,请替换最后一行

...     leaf.setdefault(lst[-2], list()).append(lst[-1])

...     leaf[lst[-2]] = lst[-1]

获得所需的输出:

>>> result
{'A': {'A1': {'A11': 1}, 'A2': {'A21': 6, 'A12': 2}}, 'C': {'C1': {'C11': 4}}, 'B': {'B1': {'B12': 3}, 'B2': {'B21': 5}}}

用于测试的示例数据:

import pandas as pd
data = {'name': ['A','A','B','C','B','A'],
          'v1': ['A1','A2','B1','C1','B2','A2'],
          'v2': ['A11','A12','B12','C11','B21','A21'],
          'v3': [1,2,3,4,5,6]}
df = pd.DataFrame.from_dict(data)

答案 2 :(得分:2)

请参阅here,因为它们是您可以传递以获得多种不同形式的输出的一些选项。

In [5]: df
Out[5]: 
  name  v1   v2  v3
0    A  A1  A11   1
1    A  A2  A12   2
2    B  B1  B12   3
3    C  C1  C11   4
4    B  B2  B21   5
5    A  A2  A21   6

In [6]: df.to_dict()
Out[6]: 
{'name': {0: 'A', 1: 'A', 2: 'B', 3: 'C', 4: 'B', 5: 'A'},
 'v1': {0: 'A1', 1: 'A2', 2: 'B1', 3: 'C1', 4: 'B2', 5: 'A2'},
 'v2': {0: 'A11', 1: 'A12', 2: 'B12', 3: 'C11', 4: 'B21', 5: 'A21'},
 'v3': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6}}

这是一种创建json格式的方法,然后逐字地评估它以创建一个实际的字典

In [11]: import ast

In [15]: ast.literal_eval(df.to_json(orient='values'))
Out[15]: 
[['A', 'A1', 'A11', 1],
 ['A', 'A2', 'A12', 2],
 ['B', 'B1', 'B12', 3],
 ['C', 'C1', 'C11', 4],
 ['B', 'B2', 'B21', 5],
 ['A', 'A2', 'A21', 6]]

答案 3 :(得分:1)

data.groupby(by='name', sort=False).apply(lambda x: x.to_dict(orient='records'))

应该并且是最简单的方法。

答案 4 :(得分:0)

这是使用defaultdict

的另一种解决方案
df = pd.DataFrame({'name': {0: 'A', 1: 'A', 2: 'B', 3: 'C', 4: 'B', 5: 'A'},
 'v1': {0: 'A1', 1: 'A2', 2: 'B1', 3: 'C1', 4: 'B2', 5: 'A2'},
 'v2': {0: 'A11', 1: 'A12', 2: 'B12', 3: 'C11', 4: 'B21', 5: 'A21'},
 'v3': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6}})


output = defaultdict(dict)

for lst in df.values:
    try:
        output[lst[0]][lst[1]].update({lst[2]:lst[3]})
    except KeyError:
        output[lst[0]][lst[1]] = {}
    finally:
        output[lst[0]][lst[1]].update({lst[2]:lst[3]})

output

或:

output = defaultdict(dict)

for row in df.values:

    item1,item2 = row[0:2]

    if output.get(item1, {}).get(item2) == None:
        output[item1][item2] = {}

    output[item1][item2].update({row[2]:row[3]})