请帮我解决这个任务: 生成长度为n的所有二进制字符串,并设置k位。(需要在C上写入) 例如:
n=5
k=3
11100
00111
11010
01011
**01110
11001
10011
**01101
**10110
10101
**无法生成这些排列
代码:
#include <stdio.h>
#define N 10
int main (void)
{
int mas[N]={0},kst,m,n1,z,a,b;
printf("\n\nVvedit` rozmirnist` masyvu: ");
scanf("%d",&kst);
printf("\n\nVvedit` kil`kist` odynyc`: ");
scanf("%d",&n1);
for(m=0;m1;m++)
mas[m]=1;
for(m=0;m<kst;m++)
printf("%d",mas[m]);
printf("\n");
for(m=0;m<n1;m++){
for(z=0;z<(kst-1);z++)
if((mas[z]==1) && (mas[z+1]==0)){
a=mas[z];
mas[z]=mas[z+1];
mas[z+1]=a;
for(b=0;b<kst;b++)
printf("%d",mas[b]);
printf("\n");
}
}
return 0;
}
答案 0 :(得分:1)
我之前已经解决了这个问题!请在下面找到我的代码!我希望这会帮助你。
#include<stdio.h>
int NumberOfBitsSet(int number)
{
int BitsSet = 0;
while(number != 0)
{
if(number & 0x01)
{
BitsSet++;
}
number = number >> 1;
}
return BitsSet;
}
void PrintNumberInBinary(int number, int NumBits)
{
int val;
val = 1 << NumBits; // here val is the maximum possible number of N bits with only MSB set
while(val != 0)
{
if(number & val)
{
printf("1");
}
else
{
printf("0");
}
val = val >> 1;
}
}
int main()
{
int n,k,i;
int max,min;
printf("enter total number of bits and number of bits to be set:\n");
scanf("%d %d", &n, &k);
min = ((1 << k) - 1); //min possible values with k bits set
max = (min << (n-k)); //max possible value with k bits set!
//printf("%d %d", min, max);
for(i=0; i<= max; i++)
{
if(!(i<min))
{
if(NumberOfBitsSet(i) == k)
{
PrintNumberInBinary(i, (n-1));
printf("\n");
}
}
}
return 0;
}
答案 1 :(得分:1)
你的代码很乱;)
说真的:在代码中解决任务时的第一条规则是编写干净的代码,使用合理的变量命名等。
对于像这样的任务,我建议using this。
现在您的示例代码:它不会编译,很难读取您要执行的操作。格式化并带有一些注释:
#include <stdio.h>
#define N 10
int main(void)
{
int mas[N] = {0};
int kst, m, n1, z, a, b;
/* Read width ? */
printf("\n\nVvedit` rozmirnist` masyvu: ");
scanf("%d", &kst);
/* Read number of bit's set? */
printf("\n\nVvedit` kil`kist` odynyc`: ");
scanf("%d", &n1);
/* m1 is not defined, thus the loop give no meaning.
* Guess you are trying to set "bits" integers to 1.
*/
for (m = 0; m1; m++)
mas[m] = 1;
/* This should be in a function as 1. You do it more then once, and
* 2. It makes the code much cleaner and easy to maintain.
*/
for (m = 0; m < kst; m++)
printf("%d", mas[m]);
printf("\n");
for (m = 0; m < n1; m++) {
for (z = 0; z < (kst - 1); z++) {
if ((mas[z] == 1) && (mas[z + 1] == 0)) {
a = mas[z]; /* Same as a = 1; */
mas[z] = mas[z + 1]; /* Same as mas[z] = 0; */
mas[z + 1] = a; /* Same as mas[z + 1] = 1; */
/* Put this into a function. */
for (b = 0; b < kst; b++)
printf("%d", mas[b]);
printf("\n");
}
}
}
return 0;
}
当人们不确定发生了什么时,广泛使用printf
是一种宝贵的工具。
这不是解决方案,(它基本上和你的帖子一样,但是分开了),但是可能更容易使用的样本。我还使用char数组作为C-string而不是整数数组。在这种情况下更容易使用。
如果你想使用整数数组,我建议你添加一个print_perm(int *perm, int width)
辅助函数,使其脱离主代码。
#include <stdio.h>
#define MAX_WIDTH 10
int get_spec(int *width, int *bits)
{
fprintf(stderr, "Enter width (max %-2d): ", MAX_WIDTH);
scanf("%d", width);
if (*width > MAX_WIDTH) {
fprintf(stderr, "Bad input: %d > %d\n", *width, MAX_WIDTH);
return 1;
}
fprintf(stderr, "Enter set bits (max %-2d): ", *width);
scanf("%d", bits);
if (*bits > MAX_WIDTH) {
fprintf(stderr, "Bad input: %d > %d\n", *bits, MAX_WIDTH);
return 1;
}
return 0;
}
void permutate(int width, int bits)
{
char perm[MAX_WIDTH + 1];
int i, j;
/* Set "bits" */
for (i = 0; i < width; ++i)
perm[i] = i < bits ? '1' : '0';
/* Terminate C string */
perm[i] = '\0';
fprintf(stderr, "\nPermutations:\n");
printf("%s\n", perm);
for (i = 0; i < bits; ++i) {
/* Debug print current perm and outer iteration number */
printf("%*s LOOP(%d) %s\n",
width, "", i, perm
);
for (j = 0; j < (width - 1); ++j) {
if (perm[j] == '1' && perm[j + 1] == '0') {
perm[j] = '0';
perm[j + 1] = '1';
printf("%s j=%d print\n",
perm, j
);
} else {
/* Debug print */
printf("%*s j=%d skip %s\n",
width, "", j, perm
);
}
}
}
}
int main(void)
{
int width, bits;
if (get_spec(&width, &bits))
return 1;
permutate(width, bits);
return 0;
}
答案 2 :(得分:0)
如果要在不进行“迭代和检查”的情况下唯一列出所有排列,您可以执行以下操作:
# Move peg x up m using s
# x is negative
# m is positive
def move(x, m, s):
for i in range(1, m+1):
s2 = list(s)
s2[x] = 0
s2[x - i] = 1
print(s2)
if x + 1 < 0:
move(x+1, i, s2)
# Print all unique permutations of
# n bits with k ones (and n-k zeros)
def uniqPerms(n, k):
s = [0 for _ in range(n-k)] + [1 for _ in range(k)]
print(s)
move(-k, n-k, s)
if __name__ == '__main__':
from sys import argv
uniqPerms(int(argv[1]), int(argv[2]))
这个想法是你以递归的方式将1加倍,这样每个动作都会产生一个唯一的列表(因为1现在是以前没有的)。
你说它必须在C:
#include <stdio.h>
#include <stdlib.h>
enum { n = 8 };
struct string
{
char str[n + 1];
};
void move(int x, int m, string s)
{
for (int i = 0; i <= m; ++i)
{
string s2 = s;
s2.str[n + x] = '0';
s2.str[n + x - i] = '1';
printf("%s\n", s2.str);
if (x + 1 < 0)
move(x + 1, i, s2);
}
}
void uniqPerms(int k)
{
string s;
for (int i = 0; i < n - k; ++i)
s.str[i] = '0';
for (int i = n - k; i < n; ++i)
s.str[i] = '1';
s.str[n] = '\0';
printf("%s\n", s.str);
move(-k, n - k, s);
}
int main(int argc, char *argv[])
{
uniqPerms(atoi(argv[1]));
return 0;
}
答案 3 :(得分:0)
试试这个
A[n-1]=0;
func(n-1);
A[n-1]=1;
func(n-1);
答案 4 :(得分:0)
//Think simple people but please bear with me i love java
//Assume array A is globally defined
void Binary(int n)
{
if(n<1)
{
System.out.println(A);
}
else
{
A[n-1]=0;
Binary(n-1);
A[n-1]=1;
Binary(n-1);
}
}
答案 5 :(得分:0)
这是递归解决方案
#include <iostream>
#include <vector>
using namespace std;
char v[4];
int count = 0;
void printString(){
int i;
for(i = 0; i < 4; i++){
cout << v[i] << " ";
}
cout <<count << endl;
}
void binary(int n){
if(n < 0){
if(count == 2)
printString();
}
else{
v[n] = '0';
binary(n - 1);
v[n] = '1';
count++;
binary(n-1);
count--;
}
}
int main(){
binary(3);
return 0;
}
答案 6 :(得分:-1)
#include<stdio.h>
int main(){
int n,k,i,j,a[50];
//lets suppose maximum size is 50
printf("Enter the value for n");
scanf("%d",&n);
printf("Enter the value for k");
scanf("%d",&k);
//create an initial bitstring of k 1's and n-k 0's;
for(i=0;i<n;i++){
if(k>0)
a[i]=1;
else
a[i]=0;
k--;
}
for(i=0;i<n;i++){
if(a[i]==1){
for(j=0;j<n;j++){
if(j!=i&&a[j]==0){
a[j]=1;a[i]=0;
for(k=0;k<n;k++){printf("%d\n",a[k]);}
a[i]=1; a[j]=0;
}}}}
return 0;
}
答案 7 :(得分:-1)
**如果复杂性无关紧要,您可以使用以下代码在java中完成。这将在o(2 ^ n)中提供所需的输出。这里我找到了大小为n的数组中给定n位的0和1的所有组合。如果K位被设置,我已经计算了1的数量present使用countBits()函数等于k,所以我打印了那个数组。
public class GenerateAllStringOfNBitsWithKBitsSet {
public static int a[] ={0,0,0,0,0};
static int k=3;
public static boolean countBits(){
int y=0;
for(int i=0;i<a.length;i++)
y += a[i] & 1 ;
if(y==k)
return true;
return false;
}
public static void gen(int n)
{
if(n<1)
{
if(countBits())
System.out.println(Arrays.toString(a));
}
else
{
a[n-1]=0;
gen(n-1);
a[n-1]=1;
gen(n-1);
}
}
public static void main(String[] args) {
GenerateAllStringOfNBitsWithKBitsSet.gen(a.length);
}
}