tl; dr 使用坐标点在数组中绘制平滑线条的快速方法是什么?注意:阅读以下信息可能会提供一些急需的背景信息。
我目前正致力于实施康威的生命游戏。我一次使用鼠标监听器[mouseDragged,特别是]两个点,并将它们传递给这个方法:
public void findIndexSmoothed(int x, int y, int nx, int ny)
{
int size1 = size / 2 + 1; // radius
size1 *= brush;
int searchMargin = 10; // how many squares are checked within a certain
double slope;
// ((x/size) -50 >0) ? ((x/size) -50) : 0
// Optimizes performance at the expense of function
// UPDATE: a simple if/else reduced function loss to nominal levels
if (x + 2.5 < nx)
{
slope = (((double) ny - y) / (nx - x));
for (int i = 0; i < sY; i++)
{
for (int j = ((x / size) - searchMargin > 0) ? ((x / size) - searchMargin) : 0; j <
sX; j++) {
for (double c = x; c <= nx; c += 1)
{
if ((valCoord[i][j][0] >= c - size1 && valCoord[i][j][0] <= c + size1)
&& (valCoord[i][j][1] >= ((slope * (c - x)) + y) - size1 && valCoord[i][j][1] <= ((slope * (c - x)) + y)
+ size1))
{
flagVals[i][j] = true;
actualVals[i][j] = true;
cachedVals[i][j] = true;
cachedVals[i + 1][j + 1] = true;
cachedVals[i + 1][j] = true;
cachedVals[i + 1][j - 1] = true;
cachedVals[i][j + 1] = true;
cachedVals[i][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
cachedVals[i - 1][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
}
}
}
}
}
else if (x - 2.5 > nx)
{
slope = (((double) ny - y) / (nx - x));
int d = ((x / size) + searchMargin < sX) ? ((x / size) + searchMargin) : sX;
for (int i = 0; i < sY; i++)
{
for (int j = 0; j < d; j++)
{
for (double c = nx; c <= x; c += 1)
{
if ((valCoord[i][j][0] >= c - size1 && valCoord[i][j][0] <= c + size1)
&& (valCoord[i][j][1] >= ((slope * (c - x)) + y) - size1 && valCoord[i][j][1] <= ((slope * (c - x)) + y)
+ size1))
{
flagVals[i][j] = true;
actualVals[i][j] = true;
cachedVals[i][j] = true;
cachedVals[i + 1][j + 1] = true;
cachedVals[i + 1][j] = true;
cachedVals[i + 1][j - 1] = true;
cachedVals[i][j + 1] = true;
cachedVals[i][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
cachedVals[i - 1][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
}
}
}
}
}
else
{
if (ny > y)
{
for (int i = 0; i < sY; i++)
{
for (int j = ((x / size) - searchMargin > 0) ? ((x / size) - searchMargin) : 0; j < sX; j++)
{
for (double c = y; c <= ny; c++)
{
if ((valCoord[i][j][0] >= x - size1 && valCoord[i][j][0] <= x + size1)
&& (valCoord[i][j][1] >= c - size1 && valCoord[i][j][1] <= c + size1))
{
flagVals[i][j] = true;
actualVals[i][j] = true;
cachedVals[i][j] = true;
cachedVals[i + 1][j + 1] = true;
cachedVals[i + 1][j] = true;
cachedVals[i + 1][j - 1] = true;
cachedVals[i][j + 1] = true;
cachedVals[i][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
cachedVals[i - 1][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
}
}
}
}
}
else
{
for (int i = 0; i < sY; i++)
{
for (int j = ((x / size) - searchMargin > 0) ? ((x / size) - searchMargin) : 0; j < sX; j++)
{
for (double c = ny; c <= y; c++)
{
if ((valCoord[i][j][0] >= x - size1 && valCoord[i][j][0] <= x + size1)
&& (valCoord[i][j][1] >= c - size1 && valCoord[i][j][1] <= c + size1))
{
flagVals[i][j] = true;
actualVals[i][j] = true;
cachedVals[i][j] = true;
cachedVals[i + 1][j + 1] = true;
cachedVals[i + 1][j] = true;
cachedVals[i + 1][j - 1] = true;
cachedVals[i][j + 1] = true;
cachedVals[i][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
cachedVals[i - 1][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
}
}
}
}
}
}
}
好吧,如果你的眼睛还没有出血,请允许我解释这个庞然大物究竟是做什么的。首先,它计算拖动鼠标的方式。让我们说它是正确的。然后它计算由两个点形成的线的斜率,并通过这三个嵌套的for循环。
for (int i = 0; i < sY; i++)
{
for (int j = ((x / size) - searchMargin > 0) ? ((x / size) - searchMargin) : 0; j <
sX; j++) {
for (double c = x; c <= nx; c += 1)
{
if ((valCoord[i][j][0] >= c - size1 && valCoord[i][j][0] <= c + size1)
&& (valCoord[i][j][1] >= ((slope * (c - x)) + y) - size1 && valCoord[i][j][1] <= ((slope * (c - x)) + y)
+ size1))
{
flagVals[i][j] = true;
actualVals[i][j] = true;
cachedVals[i][j] = true;
cachedVals[i + 1][j + 1] = true;
cachedVals[i + 1][j] = true;
cachedVals[i + 1][j - 1] = true;
cachedVals[i][j + 1] = true;
cachedVals[i][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
cachedVals[i - 1][j - 1] = true;
cachedVals[i - 1][j + 1] = true;
}
}
}
它完全循环通过数组的垂直部分,并通过它的水平部分循环。最后一个for循环遍历两点之间的每个X坐标。 if语句将X值插入到行的等式中,找到相应的Y值,并检查坐标点数组是否匹配。如果找到一个,则它将用于处理的数组[和它的对应物]在该位置设置为等于true。 (您可以忽略cachedVals,这是网格优化的一部分,与问题无关)
在一个相当小的网格上,比如说100x100,这种方法很完美,几乎有0滞后。但是,我使用的是更大的网格[大约3000x2500],可以包含多达700万个位置。有关如何优化[或完全更改]此代码的任何想法?
编辑:所以我前一段时间工作了,但是我忘记在这里发布了。如果其他人有类似的问题,这是我的实现:public void findIndexSmoothedII(int x, int y, int nx, int ny) // A custom implementation of Bresenham's Line
// Algorithm
{
// preliminary brush size and super-sampling calculations
int use = (size / 2 + 1) * brush / size;
int shift = superSampled ? 1 : 0;
// Determine distance between points in the X and Y axes, regardless of direction
int dx = Math.abs(nx - x), dy = Math.abs(ny - y);
// Determine what type of movement to take along line, based on direction
int sx = x < nx ? 1 : -1, sy = y < ny ? 1 : -1;
// threshold of offset before incrementing
int err = (dx > dy ? dx : -dy) / 2;
// The (sX,sY) values converted from the raw coordinates
int xS, yS;
while (true)
{
// if Both x and y have been incremented to the location of the second point, line is drawn and the algorithim
// can end
if (x == nx && y == ny)
break;
// Determine where cursor is in terms of (sY,sX) and handle border cases for X-Axis
if ((x / size) - use > 0 && (x / size) + use < sX)
xS = x / size;
else if ((x / size) - use > 0 && (x / size) + use >= sX)
xS = 5000;
else
xS = -5000;
// Determine where cursor is in terms of (sY,sX) and handle border cases for Y-Axis
if ((y / size) - use > 0 && (y / size) + use < sY)
yS = y / size;
else if ((y / size) - use > 0 && (y / size) + use >= sY)
yS = 5000;
else
yS = -5000;
// Below loops are responsible for array access and accounting for brush size
for (int j = yS - (use << shift); j < yS + (use << shift); j++)
{
for (int i = xS - (use << shift); i < xS + (use << shift); i++)
{
if (i < sX - 3 && i > 2 && j > 2 && j < sY - 3)
{
flagVals[j][i] = true;
actualVals[j][i] = true;
cachedVals[j][i] = true;
cachedVals[j + 1][i + 1] = true;
cachedVals[j + 1][i] = true;
cachedVals[j + 1][i - 1] = true;
cachedVals[j][i + 1] = true;
cachedVals[j][i - 1] = true;
cachedVals[j - 1][i + 1] = true;
cachedVals[j - 1][i - 1] = true;
cachedVals[j - 1][i + 1] = true;
}
}
}
// determine where to point to next
int e2 = err;
if (e2 > -dx)
{
err -= dy;
x += sx;
}
if (e2 < dy)
{
err += dx;
y += sy;
}
}
}
答案 0 :(得分:2)
实施Bresenham的线算法(http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm)。它非常简单,你可以直接使用数组索引作为坐标。