我所拥有的数据集包括1380个对冲基金的月度回报,但大多数基金都缺少数据。我想将每一只基金的月回报率回归到一些因素,如国债收益率(TBY)。我尝试使用for循环将每个资金的月度回报回归到因子,但收到以下错误消息:
#Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
# 0 (non-NA) cases
我在互联网上做了一些搜索,并认为问题是由列表删除引起的。我复制了一个简单的案例来说明:
#create a dataframe A with 8 funds and two factors
A<-data.frame(fund1=rnorm(5),fund2=rnorm(5),fund3=rnorm(5),fund4=rnorm(5),
fund5=rnorm(5),fund6=rnorm(5),fund7=rnorm(5),fund8=rnorm(5),
SP500=rnorm(5),TBY=rnorm(5))
#replace some vlaue with NA
A[1,3:5]<-NA
A[2,1:2]<-NA
A[3,3]<-NA
A[4,2:4]<-NA
A[5,1]<-NA
A[1:5,7]<-NA
A
# build two data frames to split funds and factors
funds<-as.data.frame(A[,1:8])
factors<-as.data.frame(A[,9:10])
# build empty data frame to store regression outputs
results<-data.frame(matrix(NA,ncol=4,nrow=8))
colnames(results)<-c("estimates", "residual", "t", "p")
rownames(results)<-as.vector(colnames(funds))
for(i in 1:8){
fit<-lm(as.vector(funds[,i])~TBY,data=factors,na.action=na.omit)
results[i,1]<-coef(summary(fit))[1,1]
results[i,2]<-coef(summary(fit))[1,2]
results[i,3]<-coef(summary(fit))[1,3]
results[i,4]<-coef(summary(fit))[1,4]
}
results
最终结果如下:
results
# estimates residual t p
# fund1 0.1039720 0.2486456 0.4181535 0.7478621
# fund2 -0.1040939 0.2464246 -0.4224168 0.7455554
# fund3 0.3869647 NaN NaN NaN
# fund4 0.1349445 0.2107588 0.6402796 0.6374377
# fund5 0.7470140 0.4066014 1.8372147 0.2075786
# fund6 0.8305238 0.3845686 2.1596245 0.1196180
# fund7 NA NA NA NA
# fund8 NA NA NA NA
程序停止在fund7循环。我认为主要原因是fund7的列仅包含NA
s,因此循环无法继续。任何人都可以给我一些建议,让程序在这种情况下继续吗?我希望得到的结果是每个回归模型的常数。您的意见将非常感谢。
感谢。
答案 0 :(得分:0)
在try
中包裹循环体将允许它在发生错误后继续。此外,您可以像这样一次分配整行results
:
for(i in 1:8)try({fit<-lm(as.vector(funds[,i])~TBY,data=factors,na.action=na.omit)
results[i,]<-coef(summary(fit))[1,]
})
## Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
## 0 (non-NA) cases
results
## estimates residual t p
## fund1 0.1977773 0.1949221 1.0146478 0.4953715
## fund2 0.7192174 0.2862573 2.5124861 0.2411462
## fund3 2.9271787 NaN NaN NaN
## fund4 0.8757588 2.1261925 0.4118906 0.7512633
## fund5 -0.3371507 0.5472105 -0.6161262 0.6005921
## fund6 0.2844758 0.3068079 0.9272114 0.4222080
## fund7 NA NA NA NA
## fund8 -0.2380825 0.2613918 -0.9108262 0.4295420
顺便说一句,您完全使用sapply
和tryCatch
sapply(funds,function(x)
tryCatch(coef(summary(lm(x ~ TBY,data=factors,na.action=na.omit)))[1,],
error= function(x)rep(NA,4)))
## fund1 fund2 fund3 fund4 fund5 fund6 fund7
## Estimate 0.1977773 0.7192174 2.927179 0.8757588 -0.3371507 0.2844758 NA
## Std. Error 0.1949221 0.2862573 NaN 2.1261925 0.5472105 0.3068079 NA
## t value 1.0146478 2.5124861 NaN 0.4118906 -0.6161262 0.9272114 NA
## Pr(>|t|) 0.4953715 0.2411462 NaN 0.7512633 0.6005921 0.4222080 NA
## fund8
## Estimate -0.2380825
## Std. Error 0.2613918
## t value -0.9108262
## Pr(>|t|) 0.4295420