我有纬度和经度数据,我需要计算两个包含位置的数组之间的距离矩阵。我使用这个This来获得纬度和经度两个位置之间的距离。
以下是我的代码示例:
import numpy as np
import math
def get_distances(locs_1, locs_2):
n_rows_1 = locs_1.shape[0]
n_rows_2 = locs_2.shape[0]
dists = np.empty((n_rows_1, n_rows_2))
# The loops here are inefficient
for i in xrange(n_rows_1):
for j in xrange(n_rows_2):
dists[i, j] = get_distance_from_lat_long(locs_1[i], locs_2[j])
return dists
def get_distance_from_lat_long(loc_1, loc_2):
earth_radius = 3958.75
lat_dif = math.radians(loc_1[0] - loc_2[0])
long_dif = math.radians(loc_1[1] - loc_2[1])
sin_d_lat = math.sin(lat_dif / 2)
sin_d_long = math.sin(long_dif / 2)
step_1 = (sin_d_lat ** 2) + (sin_d_long ** 2) * math.cos(math.radians(loc_1[0])) * math.cos(math.radians(loc_2[0]))
step_2 = 2 * math.atan2(math.sqrt(step_1), math.sqrt(1-step_1))
dist = step_2 * earth_radius
return dist
我的预期输出是:
>>> locations_1 = np.array([[34, -81], [32, -87], [35, -83]])
>>> locations_2 = np.array([[33, -84], [39, -81], [40, -88], [30, -80]])
>>> get_distances(locations_1, locations_2)
array([[ 186.13522573, 345.46610882, 566.23466349, 282.51056676],
[ 187.96657622, 589.43369894, 555.55312473, 436.88855214],
[ 149.5853537 , 297.56950329, 440.81203371, 387.12153747]])
性能对我来说很重要,我可以做的一件事是使用Cython
加速循环,但如果我不必去那里就会很好。
是否有可以执行此类操作的模块?还是其他任何解决方案?
答案 0 :(得分:10)
你正在使用的Haversine方程中有许多次优的东西。您可以修剪其中一些并最小化您需要计算的正弦,余弦和平方根的数量。以下是我能够提出的最好的,并且我的系统运行速度比Ophion的代码快了大约5倍(在矢量化方面大致相同),在1000和2000个元素的两个随机数组上运行:
def spherical_dist(pos1, pos2, r=3958.75):
pos1 = pos1 * np.pi / 180
pos2 = pos2 * np.pi / 180
cos_lat1 = np.cos(pos1[..., 0])
cos_lat2 = np.cos(pos2[..., 0])
cos_lat_d = np.cos(pos1[..., 0] - pos2[..., 0])
cos_lon_d = np.cos(pos1[..., 1] - pos2[..., 1])
return r * np.arccos(cos_lat_d - cos_lat1 * cos_lat2 * (1 - cos_lon_d))
如果你按原样喂它的两个阵列它会抱怨,但这不是一个错误,它是一个功能。基本上,此函数计算球体在最后一个维度上的距离,并在其余维度上进行广播。所以你可以得到你所追求的:
>>> spherical_dist(locations_1[:, None], locations_2)
array([[ 186.13522573, 345.46610882, 566.23466349, 282.51056676],
[ 187.96657622, 589.43369894, 555.55312473, 436.88855214],
[ 149.5853537 , 297.56950329, 440.81203371, 387.12153747]])
但它也可用于计算两个点列表之间的距离,即:
>>> spherical_dist(locations_1, locations_2[:-1])
array([ 186.13522573, 589.43369894, 440.81203371])
或两个单点之间:
>>> spherical_dist(locations_1[0], locations_2[0])
186.1352257300577
这是关于gufunc如何工作的启发,一旦你习惯了它,我发现它是一个美妙的“瑞士军刀”编码风格,让你可以在许多不同的设置中重复使用单个功能。
答案 1 :(得分:5)
这只是对代码进行矢量化:
def new_get_distances(loc1, loc2):
earth_radius = 3958.75
locs_1 = np.deg2rad(loc1)
locs_2 = np.deg2rad(loc2)
lat_dif = (locs_1[:,0][:,None]/2 - locs_2[:,0]/2)
lon_dif = (locs_1[:,1][:,None]/2 - locs_2[:,1]/2)
np.sin(lat_dif, out=lat_dif)
np.sin(lon_dif, out=lon_dif)
np.power(lat_dif, 2, out=lat_dif)
np.power(lon_dif, 2, out=lon_dif)
lon_dif *= ( np.cos(locs_1[:,0])[:,None] * np.cos(locs_2[:,0]) )
lon_dif += lat_dif
np.arctan2(np.power(lon_dif,.5), np.power(1-lon_dif,.5), out = lon_dif)
lon_dif *= ( 2 * earth_radius )
return lon_dif
locations_1 = np.array([[34, -81], [32, -87], [35, -83]])
locations_2 = np.array([[33, -84], [39, -81], [40, -88], [30, -80]])
old = get_distances(locations_1, locations_2)
new = new_get_distances(locations_1,locations_2)
np.allclose(old,new)
True
如果我们看一下时间:
%timeit new_get_distances(locations_1,locations_2)
10000 loops, best of 3: 80.6 µs per loop
%timeit get_distances(locations_1,locations_2)
10000 loops, best of 3: 74.9 µs per loop
对于一个小例子来说实际上是慢的;但是,让我们看一个更大的例子:
locations_1 = np.random.rand(1000,2)
locations_2 = np.random.rand(1000,2)
%timeit get_distances(locations_1,locations_2)
1 loops, best of 3: 5.84 s per loop
%timeit new_get_distances(locations_1,locations_2)
10 loops, best of 3: 149 ms per loop
我们现在的加速比为40倍。可能会在一些地方挤出更多的速度。
编辑:做了一些更新以删除多余的位置,并明确表示我们没有改变原始位置数组。
答案 2 :(得分:4)
使用meshgrid替换double for循环时效率更高:
import numpy as np
earth_radius = 3958.75
def get_distances(locs_1, locs_2):
lats1, lats2 = np.meshgrid(locs_1[:,0], locs_2[:,0])
lons1, lons2 = np.meshgrid(locs_1[:,1], locs_2[:,1])
lat_dif = np.radians(lats1 - lats2)
long_dif = np.radians(lons1 - lons2)
sin_d_lat = np.sin(lat_dif / 2.)
sin_d_long = np.sin(long_dif / 2.)
step_1 = (sin_d_lat ** 2) + (sin_d_long ** 2) * np.cos(np.radians(lats1[0])) * np.cos(np.radians(lats2[0]))
step_2 = 2 * np.arctan2(np.sqrt(step_1), np.sqrt(1-step_1))
dist = step_2 * earth_radius
return dist
答案 3 :(得分:4)