清除包含需要折叠的多个级别的因子的最有效(即有效/适当)方法是什么?也就是说,如何将两个或多个因子级别合并为一个。
以下是一个示例,其中“是”和“Y”这两个级别应折叠为“是”,“否”和“N”折叠为“否”:
## Given:
x <- c("Y", "Y", "Yes", "N", "No", "H") # The 'H' should be treated as NA
## expectedOutput
[1] Yes Yes Yes No No <NA>
Levels: Yes No # <~~ NOTICE ONLY **TWO** LEVELS
当然,一个选项是使用sub
和朋友预先清理字符串。
另一种方法是允许重复标签,然后删除它们
## Duplicate levels ==> "Warning: deprecated"
x.f <- factor(x, levels=c("Y", "Yes", "No", "N"), labels=c("Yes", "Yes", "No", "No"))
## the above line can be wrapped in either of the next two lines
factor(x.f)
droplevels(x.f)
然而,是否有更有效的方法?
虽然我知道levels
和labels
参数应该是向量,但我尝试使用列表和命名列表以及命名向量来查看会发生什么
不用说,以下没有一个让我更接近我的目标。
factor(x, levels=list(c("Yes", "Y"), c("No", "N")), labels=c("Yes", "No"))
factor(x, levels=c("Yes", "No"), labels=list(c("Yes", "Y"), c("No", "N")))
factor(x, levels=c("Y", "Yes", "No", "N"), labels=c(Y="Yes", Yes="Yes", No="No", N="No"))
factor(x, levels=c("Y", "Yes", "No", "N"), labels=c(Yes="Y", Yes="Yes", No="No", No="N"))
factor(x, levels=c("Yes", "No"), labels=c(Y="Yes", Yes="Yes", No="No", N="No"))
答案 0 :(得分:74)
使用levels
函数,并将其传递给命名列表,其名称是级别的所需名称,元素是应重命名的当前名称。
x <- c("Y", "Y", "Yes", "N", "No", "H")
x <- factor(x)
levels(x) <- list(Yes=c("Y", "Yes"), No=c("N", "No"))
x
## [1] Yes Yes Yes No No <NA>
## Levels: Yes No
如levels
文档中所述;也看那里的例子。
值:对于'factor'方法,a 矢量字符串,长度至少为数字 'x'的级别,或指定如何重命名的命名列表 水平。
这也可以在一行中完成,正如马雷克在这里所做的那样:https://stackoverflow.com/a/10432263/210673;这里解释levels<-
法术https://stackoverflow.com/a/10491881/210673。
> `levels<-`(factor(x), list(Yes=c("Y", "Yes"), No=c("N", "No")))
[1] Yes Yes Yes No No <NA>
Levels: Yes No
答案 1 :(得分:17)
由于问题标题为清理因子级别(折叠多个级别/标签),因此为了完整起见,此处也应提及forcats
包。 forcats
于2016年8月在CRAN上出现。
有几种便利功能可用于清理因子水平:
x <- c("Y", "Y", "Yes", "N", "No", "H")
library(forcats)
fct_collapse(x, Yes = c("Y", "Yes"), No = c("N", "No"), NULL = "H")
#[1] Yes Yes Yes No No <NA>
#Levels: No Yes
fct_recode(x, Yes = "Y", Yes = "Yes", No = "N", No = "No", NULL = "H")
#[1] Yes Yes Yes No No <NA>
#Levels: No Yes
fun <- function(z) {
z[z == "Y"] <- "Yes"
z[z == "N"] <- "No"
z[!(z %in% c("Yes", "No"))] <- NA
z
}
fct_relabel(factor(x), fun)
#[1] Yes Yes Yes No No <NA>
#Levels: No Yes
请注意fct_relabel()
适用于因子级别,因此它需要因子作为第一个参数。另外两个函数fct_collapse()
和fct_recode()
也接受字符向量,这是一个未记录的功能。
OP给出的预期输出是
[1] Yes Yes Yes No No <NA>
Levels: Yes No
此处的级别按x
中显示的顺序排序,与默认值不同(?factor
:默认排序因子的级别)。
为了与预期的输出一致,可以在折叠级别之前使用fct_inorder()
来实现:
fct_collapse(fct_inorder(x), Yes = c("Y", "Yes"), No = c("N", "No"), NULL = "H")
fct_recode(fct_inorder(x), Yes = "Y", Yes = "Yes", No = "N", No = "No", NULL = "H")
现在,两者都以相同的顺序返回预期输出。
答案 2 :(得分:7)
也许命名向量作为键可能有用:
> factor(unname(c(Y = "Yes", Yes = "Yes", N = "No", No = "No", H = NA)[x]))
[1] Yes Yes Yes No No <NA>
Levels: No Yes
这看起来与你上次的尝试非常相似......但是这个有效: - )
答案 3 :(得分:5)
另一种方法是创建一个包含映射的表:
# stacking the list from Aaron's answer
fmap = stack(list(Yes = c("Y", "Yes"), No = c("N", "No")))
fmap$ind[ match(x, fmap$values) ]
# [1] Yes Yes Yes No No <NA>
# Levels: No Yes
# or...
library(data.table)
setDT(fmap)[x, on=.(values), ind ]
# [1] Yes Yes Yes No No <NA>
# Levels: No Yes
我更喜欢这种方式,因为它留下了一个易于检查的对象,总结了地图; data.table代码看起来就像该语法中的任何其他连接一样。
当然,如果您不希望像fmap
这样的对象总结变更,那么它可以是一个&#34;单行&#34;:
library(data.table)
setDT(stack(list(Yes = c("Y", "Yes"), No = c("N", "No"))))[x, on=.(values), ind ]
# [1] Yes Yes Yes No No <NA>
# Levels: No Yes
答案 4 :(得分:3)
自R 3.5.0(2018-04-23)起,您可以在一条清晰简单的代码行中执行此操作:
x = c("Y", "Y", "Yes", "N", "No", "H") # The 'H' should be treated as NA
tmp = factor(x, levels= c("Y", "Yes", "N", "No"), labels= c("Yes", "Yes", "No", "No"))
tmp
# [1] Yes Yes Yes No No <NA>
# Levels: Yes No
1行,将多个值映射到同一级别,为缺失级别设置NA” – h / t @Aaron
答案 5 :(得分:2)
我不知道你的真实用例,但strtrim
在这里有用......
factor( strtrim( x , 1 ) , levels = c("Y" , "N" ) , labels = c("Yes" , "No" ) )
#[1] Yes Yes Yes No No <NA>
#Levels: Yes No
答案 6 :(得分:2)
与@ Aaron的方法类似,但稍微简单一点:
x <- c("Y", "Y", "Yes", "N", "No", "H")
x <- factor(x)
# levels(x)
# [1] "H" "N" "No" "Y" "Yes"
# NB: the offending levels are 1, 2, & 4
levels(x)[c(1,2,4)] <- c(NA, "No", "Yes")
x
# [1] Yes Yes Yes No No <NA>
# Levels: No Yes
答案 7 :(得分:2)
我添加此答案以说明接受的答案在数据框中的特定因素上起作用,因为这最初对我而言并不明显(尽管可能应该如此)。
levels(df$var1)
# "0" "1" "Z"
summary(df$var1)
# 0 1 Z
# 7012 2507 8
levels(df$var1) <- list("0"=c("Z", "0"), "1"=c("1"))
levels(df$var1)
# "0" "1"
summary(df$var1)
# 0 1
# 7020 2507
答案 8 :(得分:1)
您可以使用以下功能组合/折叠多个因素:
combofactor <- function(pattern_vector,
replacement_vector,
data) {
levels <- levels(data)
for (i in 1:length(pattern_vector))
levels[which(pattern_vector[i] == levels)] <-
replacement_vector[i]
levels(data) <- levels
data
}
示例:
初始化x
x <- factor(c(rep("Y",20),rep("N",20),rep("y",20),
rep("yes",20),rep("Yes",20),rep("No",20)))
检查结构
str(x)
# Factor w/ 6 levels "N","No","y","Y",..: 4 4 4 4 4 4 4 4 4 4 ...
使用功能:
x_new <- combofactor(c("Y","N","y","yes"),c("Yes","No","Yes","Yes"),x)
重新检查结构:
str(x_new)
# Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
答案 9 :(得分:1)
首先让我们注意,在这种特定情况下,我们可以使用部分匹配:
x <- c("Y", "Y", "Yes", "N", "No", "H")
y <- c("Yes","No")
x <- factor(y[pmatch(x,y,duplicates.ok = TRUE)])
# [1] Yes Yes Yes No No <NA>
# Levels: No Yes
在更一般的情况下,我会选择dplyr::recode
:
library(dplyr)
x <- c("Y", "Y", "Yes", "N", "No", "H")
y <- c(Y="Yes",N="No")
x <- recode(x,!!!y)
x <- factor(x,y)
# [1] Yes Yes Yes No No <NA>
# Levels: Yes No
如果起点是一个因素,则略有改变:
x <- factor(c("Y", "Y", "Yes", "N", "No", "H"))
y <- c(Y="Yes",N="No")
x <- recode_factor(x,!!!y)
x <- factor(x,y)
# [1] Yes Yes Yes No No <NA>
# Levels: Yes No