我正在尝试执行以下
>> from numpy import *
>> x = array([[3,2,3],[4,4,4]])
>> y = set(x)
TypeError: unhashable type: 'numpy.ndarray'
如何使用Numpy数组中的所有元素轻松高效地创建集合?
答案 0 :(得分:26)
如果你想要一组元素,这是另一种可能更快的方法:
y = set(x.flatten())
PS:在10x100阵列上对x.flat
,x.flatten()
和x.ravel()
进行比较后,我发现它们都以大致相同的速度运行。对于3x3阵列,最快的版本是迭代器版本:
y = set(x.flat)
我会推荐它,因为它是内存较少的版本(它可以很好地扩展到数组的大小)。
PS :还有一个类似的NumPy函数:
y = numpy.unique(x)
这确实产生了一个NumPy数组,其元素与set(x.flat)
相同,但是作为NumPy数组。这非常快(几乎快10倍),但是如果你需要set
,那么执行set(numpy.unique(x))
比其他程序慢一点(构建一个集合会带来很大的开销)。
答案 1 :(得分:14)
数组的不可变对应元素是元组,因此,尝试将数组数组转换为元组数组:
>> from numpy import *
>> x = array([[3,2,3],[4,4,4]])
>> x_hashable = map(tuple, x)
>> y = set(x_hashable)
set([(3, 2, 3), (4, 4, 4)])
答案 2 :(得分:7)
如果您想要创建ndarray
中包含的元素的集合,但是如果您想创建一组ndarray
个对象,则上述答案有效 - 或者使用ndarray
个对象作为字典中的键 - 然后你必须为它们提供一个可混合的包装器。有关简单示例,请参阅下面的代码:
from hashlib import sha1
from numpy import all, array, uint8
class hashable(object):
r'''Hashable wrapper for ndarray objects.
Instances of ndarray are not hashable, meaning they cannot be added to
sets, nor used as keys in dictionaries. This is by design - ndarray
objects are mutable, and therefore cannot reliably implement the
__hash__() method.
The hashable class allows a way around this limitation. It implements
the required methods for hashable objects in terms of an encapsulated
ndarray object. This can be either a copied instance (which is safer)
or the original object (which requires the user to be careful enough
not to modify it).
'''
def __init__(self, wrapped, tight=False):
r'''Creates a new hashable object encapsulating an ndarray.
wrapped
The wrapped ndarray.
tight
Optional. If True, a copy of the input ndaray is created.
Defaults to False.
'''
self.__tight = tight
self.__wrapped = array(wrapped) if tight else wrapped
self.__hash = int(sha1(wrapped.view(uint8)).hexdigest(), 16)
def __eq__(self, other):
return all(self.__wrapped == other.__wrapped)
def __hash__(self):
return self.__hash
def unwrap(self):
r'''Returns the encapsulated ndarray.
If the wrapper is "tight", a copy of the encapsulated ndarray is
returned. Otherwise, the encapsulated ndarray itself is returned.
'''
if self.__tight:
return array(self.__wrapped)
return self.__wrapped
使用包装器类很简单:
>>> from numpy import arange
>>> a = arange(0, 1024)
>>> d = {}
>>> d[a] = 'foo'
Traceback (most recent call last):
File "<input>", line 1, in <module>
TypeError: unhashable type: 'numpy.ndarray'
>>> b = hashable(a)
>>> d[b] = 'bar'
>>> d[b]
'bar'
答案 3 :(得分:3)
如果你想要一组元素:
>> y = set(e for r in x
for e in r)
set([2, 3, 4])
对于一组行:
>> y = set(tuple(r) for r in x)
set([(3, 2, 3), (4, 4, 4)])
答案 4 :(得分:0)
我喜欢xperroni's idea。但我认为使用ndarray的直接继承而不是包装它可以简化实现。
from hashlib import sha1
from numpy import ndarray, uint8, array
class HashableNdarray(ndarray):
def __hash__(self):
if not hasattr(hasattr, '__hash'):
self.__hash = int(sha1(self.view(uint8)).hexdigest(), 16)
return self.__hash
def __eq__(self, other):
if not isinstance(other, HashableNdarray):
return super(HashableNdarray, self).__eq__(other)
return super(HashableNdarray, self).__eq__(super(HashableNdarray, other)).all()
NumPy ndarray
可以被视为派生类并用作可清除对象。 view(ndarray)
可用于反向转换,但在大多数情况下甚至不需要它。
>>> a = array([1,2,3])
>>> b = array([2,3,4])
>>> c = array([1,2,3])
>>> s = set()
>>> s.add(a.view(HashableNdarray))
>>> s.add(b.view(HashableNdarray))
>>> s.add(c.view(HashableNdarray))
>>> print(s)
{HashableNdarray([2, 3, 4]), HashableNdarray([1, 2, 3])}
>>> d = next(iter(s))
>>> print(d == a)
[False False False]
>>> import ctypes
>>> print(d.ctypes.data_as(ctypes.POINTER(ctypes.c_double)))
<__main__.LP_c_double object at 0x7f99f4dbe488>
答案 5 :(得分:0)
添加到@Eric Lebigot和他的精彩文章中。
以下是构建张量查找表的技巧:
a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
np.unique(a, axis=0)
输出:
array([[1, 0, 0], [2, 3, 4]])