CUDA - 关于“分支”和“分支分支”的Visual Profiler结果的混淆(2)

时间:2013-10-12 13:12:52

标签: linux cuda profiler

我使用NVIDIA Visual Profiler来分析我的代码。测试内核是:

//////////////////////////////////////////////////////////////// Group 1
static __global__ void gpu_test_divergency_0(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
static __global__ void gpu_test_divergency_1(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid == 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
static __global__ void gpu_test_divergency_2(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid >= 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
static __global__ void gpu_test_divergency_3(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid > 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
//////////////////////////////////////////////////////////////// Group 2
static __global__ void gpu_test_divergency_4(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
static __global__ void gpu_test_divergency_5(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid == 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
static __global__ void gpu_test_divergency_6(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid >= 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
static __global__ void gpu_test_divergency_7(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid > 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
//////////////////////////////////////////////////////////////// Group 3
static __global__ void gpu_test_divergency_8(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}
static __global__ void gpu_test_divergency_9(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid == 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}
static __global__ void gpu_test_divergency_10(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid >= 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}
static __global__ void gpu_test_divergency_11(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid > 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}

当我使用&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; 1,32&gt;&gt;&gt;,我从分析器得到了这样的结果:

gpu_test_divergency_0 :  Branch Efficiency = 100% branch = 1 divergent branch = 0
gpu_test_divergency_1 :  Branch Efficiency = 100% branch = 1 divergent branch = 0
gpu_test_divergency_2 :  Branch Efficiency = 100% branch = 1 divergent branch = 0
gpu_test_divergency_3 :  Branch Efficiency = 100% branch = 1 divergent branch = 0

gpu_test_divergency_4 :  Branch Efficiency = 100% branch = 3 divergent branch = 0
gpu_test_divergency_5 :  Branch Efficiency = 100% branch = 3 divergent branch = 0
gpu_test_divergency_6 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_7 :  Branch Efficiency = 100% branch = 3 divergent branch = 0

gpu_test_divergency_8 :  Branch Efficiency = 100% branch = 3 divergent branch = 0
gpu_test_divergency_9 :  Branch Efficiency = 75%  branch = 4 divergent branch = 1
gpu_test_divergency_10 : Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_11 : Branch Efficiency = 75%  branch = 4 divergent branch = 1

当我使用&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; 1,64&gt;&gt;&gt;,我从分析器得到了这样的结果:

gpu_test_divergency_0 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_1 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_2 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_3 :  Branch Efficiency = 100% branch = 2 divergent branch = 0

gpu_test_divergency_4 :  Branch Efficiency = 100% branch = 6 divergent branch = 0
gpu_test_divergency_5 :  Branch Efficiency = 100% branch = 6 divergent branch = 0
gpu_test_divergency_6 :  Branch Efficiency = 100% branch = 4 divergent branch = 0
gpu_test_divergency_7 :  Branch Efficiency = 100% branch = 5 divergent branch = 0

gpu_test_divergency_8 :  Branch Efficiency = 100%  branch = 6 divergent branch = 0
gpu_test_divergency_9 :  Branch Efficiency = 85.7% branch = 7 divergent branch = 1
gpu_test_divergency_10 : Branch Efficiency = 100%  branch = 4 divergent branch = 0
gpu_test_divergency_11 : Branch Efficiency = 83.3% branch = 6 divergent branch = 1

我在Linux上使用CUDA Capability of 2.0和NVIDIA Visual Profiler v4.2的“GeForce GTX 570”。根据文件:

“branch” - “执行内核的线程占用的分支数。如果warp中至少有一个线程占用分支,则此计数器将加1。”

“divergent branch” - “warp中的发散分支数。如果warp中的至少一个胎面通过依赖于数据的方向发散(即,遵循不同的执行路径),则此计数器将增加1条件分支。“

但我对结果感到困惑。为什么每个测试组的“分支”数量不同?为什么只有第三个测试组似乎有正确的“分歧分支”?

@JackOLantern:我在发布模式下编译。我以你的方式拆卸它。 “gpu_test_divergency_4”的结果与您的结果完全相同,但“gpu_test_divergency_0”的结果不同:

    Function : _Z21gpu_test_divergency_0PfS_
/*0000*/     /*0x00005de428004404*/     MOV R1, c [0x1] [0x100];
/*0008*/     /*0x94001c042c000000*/     S2R R0, SR_CTAid_X;
/*0010*/     /*0x84009c042c000000*/     S2R R2, SR_Tid_X;
/*0018*/     /*0x20009ca320044000*/     IMAD R2, R0, c [0x0] [0x8], R2;
/*0020*/     /*0xfc21dc23188e0000*/     ISETP.LT.AND P0, pt, R2, RZ, pt;
/*0028*/     /*0x0920de0418000000*/     I2F.F32.S32 R3, R2;
/*0030*/     /*0x9020204340004000*/     @!P0 ISCADD R0, R2, c [0x0] [0x24], 0x2;
/*0038*/     /*0x8020804340004000*/     @P0 ISCADD R2, R2, c [0x0] [0x20], 0x2;
/*0040*/     /*0x0000e08590000000*/     @!P0 ST [R0], R3;
/*0048*/     /*0x0020c08590000000*/     @P0 ST [R2], R3;
/*0050*/     /*0x00001de780000000*/     EXIT;

我想,就像你说的那样,转换指令(在这种情况下为I2F)不会添加额外的分支。

但我看不出这些反汇编代码与Profiler结果之间的关系。我从另一篇文章(https://devtalk.nvidia.com/default/topic/463316/branch-divergent-branches/)中了解到,使用SM上的实际线程(warp)运行情况计算出不同的分支。所以我想我们不能推断每个实际运行的分支差异,只是根据这些反汇编代码。我对吗?

1 个答案:

答案 0 :(得分:1)

关注 - 使用投票本体来检查线索的分歧

我认为检查warp中线程差异的最佳方法是使用投票内在函数,尤其是__ballot__popc内在函数。关于__ballot__popc的一个很好的解释可以在Shane Cook,CUDA编程,Morgan Kaufmann的书中找到。

__ballot的原型如下

unsigned int __ballot(int predicate);

如果谓词不为零,__ballot会返回设置了N位的值,其中NthreadIdx.x

另一方面,__popc返回使用32 - 位参数设置的位数。

因此,通过联合使用__ballot__popcatomicAdd,可以检查扭曲是否发散。

为此,我设置了以下代码

#include <cuda.h>
#include <stdio.h>
#include <iostream>

#include <cuda.h>
#include <cuda_runtime.h>

__device__ unsigned int __ballot_non_atom(int predicate)
{
    if (predicate != 0) return (1 << (threadIdx.x % 32));
    else return 0;
}

__global__ void gpu_test_divergency_0(unsigned int* d_ballot, int Num_Warps_per_Block)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    const unsigned int warp_num = threadIdx.x >> 5;

    atomicAdd(&d_ballot[warp_num+blockIdx.x*Num_Warps_per_Block],__popc(__ballot_non_atom(tid > 2)));
    //  atomicAdd(&d_ballot[warp_num+blockIdx.x*Num_Warps_per_Block],__popc(__ballot(tid > 2)));

}

#include <conio.h>

int main(int argc, char *argv[])
{
    unsigned int Num_Threads_per_Block      = 64;
    unsigned int Num_Blocks_per_Grid        = 1;
    unsigned int Num_Warps_per_Block        = Num_Threads_per_Block/32;
    unsigned int Num_Warps_per_Grid         = (Num_Threads_per_Block*Num_Blocks_per_Grid)/32;

    unsigned int* h_ballot = (unsigned int*)malloc(Num_Warps_per_Grid*sizeof(unsigned int));
    unsigned int* d_ballot; cudaMalloc((void**)&d_ballot, Num_Warps_per_Grid*sizeof(unsigned int));

    for (int i=0; i<Num_Warps_per_Grid; i++) h_ballot[i] = 0;

    cudaMemcpy(d_ballot, h_ballot, Num_Warps_per_Grid*sizeof(unsigned int), cudaMemcpyHostToDevice);

    gpu_test_divergency_0<<<Num_Blocks_per_Grid,Num_Threads_per_Block>>>(d_ballot,Num_Warps_per_Block);

    cudaMemcpy(h_ballot, d_ballot, Num_Warps_per_Grid*sizeof(unsigned int), cudaMemcpyDeviceToHost);

    for (int i=0; i<Num_Warps_per_Grid; i++) { 
        if ((h_ballot[i] == 0)||(h_ballot[i] == 32)) std::cout << "Warp " << i << " IS NOT divergent- Predicate true for " << h_ballot[i] << " threads\n";
            else std::cout << "Warp " << i << " IS divergent - Predicate true for " << h_ballot[i] << " threads\n";
    }

    getch();
    return EXIT_SUCCESS;
}

请注意,我现在正在运行计算能力1.2卡上的代码,因此在上面的示例中,我使用的是__ballot_non_atom,它是__ballot的非内在等价物,因为__ballot仅适用于计算能力&gt; = 2.0。换句话说,如果您的计算能力&gt; = 2.0,请在内核函数中使用__ballot取消注释该指令。

使用上面的代码,只需更改内核函数中的相关谓词,就可以使用上面的所有内核函数。

以前的答案

我在发布模式下编译了计算功能2.0的代码,并使用-keep保留了中间文件,并使用cuobjdump实用程序生成反汇编你的两个内核,即:

static __global__ void gpu_test_divergency_0(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0) a[tid] = tid;
    else b[tid] = tid;
}

static __global__ void gpu_test_divergency_4(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0) a[tid] = tid + 1;
    else b[tid] = tid + 2;
}

结果如下

gpu_test_divergency_0

/*0000*/        MOV R1, c[0x1][0x100];                 /* 0x2800440400005de4 */
/*0008*/        S2R R0, SR_CTAID.X;                    /* 0x2c00000094001c04 */
/*0010*/        S2R R2, SR_TID.X;                      /* 0x2c00000084009c04 */
/*0018*/        IMAD R2, R0, c[0x0][0x8], R2;          /* 0x2004400020009ca3 */
/*0020*/        ISETP.LT.AND P0, PT, R2, RZ, PT;       /* 0x188e0000fc21dc23 */
/*0028*/        I2F.F32.S32 R0, R2;                    /* 0x1800000009201e04 */
/*0030*/   @!P0 ISCADD R3, R2, c[0x0][0x24], 0x2;      /* 0x400040009020e043 */
/*0038*/    @P0 ISCADD R2, R2, c[0x0][0x20], 0x2;      /* 0x4000400080208043 */
/*0040*/   @!P0 ST [R3], R0;                           /* 0x9000000000302085 */
/*0048*/    @P0 ST [R2], R0;                           /* 0x9000000000200085 */
/*0050*/        EXIT ;                                 /* 0x8000000000001de7 */

gpu_test_divergency_4

/*0000*/        MOV R1, c[0x1][0x100];                 /* 0x2800440400005de4 */
/*0008*/        S2R R0, SR_CTAID.X;                    /* 0x2c00000094001c04 */   R0 = BlockIdx.x
/*0010*/        S2R R2, SR_TID.X;                      /* 0x2c00000084009c04 */   R2 = ThreadIdx.x
/*0018*/        IMAD R0, R0, c[0x0][0x8], R2;          /* 0x2004400020001ca3 */   R0 = R0 * c + R2
/*0020*/        ISETP.LT.AND P0, PT, R0, RZ, PT;       /* 0x188e0000fc01dc23 */   If statement
/*0028*/    @P0 BRA.U 0x58;                            /* 0x40000000a00081e7 */   Branch 1 - Jump to 0x58
/*0030*/   @!P0 IADD R2, R0, 0x2;                      /* 0x4800c0000800a003 */   Branch 2 - R2 = R0 + 2
/*0038*/   @!P0 ISCADD R0, R0, c[0x0][0x24], 0x2;      /* 0x4000400090002043 */   Branch 2 - Calculate gmem address
/*0040*/   @!P0 I2F.F32.S32 R2, R2;                    /* 0x180000000920a204 */   Branch 2 - R2 = R2 after int to float cast
/*0048*/   @!P0 ST [R0], R2;                           /* 0x900000000000a085 */   Branch 2 - gmem store
/*0050*/   @!P0 BRA.U 0x78;                            /* 0x400000008000a1e7 */   Branch 2 - Jump to 0x78 (exit)
/*0058*/    @P0 IADD R2, R0, 0x1;                      /* 0x4800c00004008003 */   Branch 1 - R2 = R0 + 1
/*0060*/    @P0 ISCADD R0, R0, c[0x0][0x20], 0x2;      /* 0x4000400080000043 */   Branch 1 - Calculate gmem address
/*0068*/    @P0 I2F.F32.S32 R2, R2;                    /* 0x1800000009208204 */   Branch 1 - R2 = R2 after int to float cast
/*0070*/    @P0 ST [R0], R2;                           /* 0x9000000000008085 */   Branch 1 - gmem store
/*0078*/        EXIT ;                                 /* 0x8000000000001de7 */

从上面的反汇编中,我预计你的分支发散测试的结果是一样的。

您是在调试还是发布模式下编译?