pandas - 在DataFrame中选择较低级别来执行ffill

时间:2013-10-11 13:29:46

标签: python pandas dataframe

我有这样一个DataFrame(它是一个MultiIndexed DataFrame?我不确定我是否理解这一点......):

df = pd.DataFrame({'index' : range(8),
'variable1' : ["A","A","B","B","A","B","B","A"],
'variable2' : ["a","b","a","b","a","b","a","b"],
'variable3' : ["x","x","x","y","y","y","x","y"],
'result': [1,0,0,1,1,0,0,1]})

df2 = df.pivot_table(values='result',rows='index',cols=['variable1','variable2','variable3'])

variable1   A               B    
variable2   a       b       a   b
variable3   x   y   x   y   x   y
index                            
0           1 NaN NaN NaN NaN NaN
1         NaN NaN   0 NaN NaN NaN
2         NaN NaN NaN NaN   0 NaN
3         NaN NaN NaN NaN NaN   1
4         NaN   1 NaN NaN NaN NaN
5         NaN NaN NaN NaN NaN   0
6         NaN NaN NaN NaN   0 NaN
7         NaN NaN NaN   1 NaN NaN

现在我要做的是ffill()值,但仅适用于variable3 == 'y'。期望的结果是:

variable1   A               B    
variable2   a       b       a   b
variable3   x   y   x   y   x   y
index                            
0           1 NaN NaN NaN NaN NaN
1         NaN NaN   0 NaN NaN NaN
2         NaN NaN NaN NaN   0 NaN
3         NaN NaN NaN NaN NaN   1
4         NaN   1 NaN NaN NaN   1
5         NaN   1 NaN NaN NaN   0
6         NaN   1 NaN NaN   0   0
7         NaN   1 NaN   1 NaN   0

我知道我可以通过迭代variable1variable2来做到这一点,因为他们每个人都做了类似的事情:

df2['A']['a']['y'].ffill()

但我想应该有一种方法可以避免这种情况......

2 个答案:

答案 0 :(得分:1)

由于需要分配结果,有点棘手。

首先交换等级,将变量3置于顶部;然后很容易计算出ffill 并分配回来。

In [44]: x = df2.swaplevel('variable1','variable3',axis=1)

In [45]: x['y'] = x['y'].ffill()

In [46]: x.swaplevel('variable3','variable1',axis=1)
Out[46]: 
variable1   A               B    
variable2   a       b       a   b
variable3   x   y   x   y   x   y
index                            
0           1 NaN NaN NaN NaN NaN
1         NaN NaN   0 NaN NaN NaN
2         NaN NaN NaN NaN   0 NaN
3         NaN NaN NaN NaN NaN   1
4         NaN   1 NaN NaN NaN   1
5         NaN   1 NaN NaN NaN   0
6         NaN   1 NaN NaN   0   0
7         NaN   1 NaN   1 NaN   0

在0.13(即将推出)中,你可以这样做

选择我们想要的子部分,并提供drop_level=False将其作为完整部分返回(例如,不要选择我们选择的级别),然后填写它。

In [77]: df_sub = df2.xs('y',level='variable3',axis=1,drop_level=False).ffill()

In [78]: df_sub
Out[78]: 
variable1   A       B
variable2   a   b   b
variable3   y   y   y
index                
0         NaN NaN NaN
1         NaN NaN NaN
2         NaN NaN NaN
3         NaN NaN   1
4           1 NaN   1
5           1 NaN   0
6           1 NaN   0
7           1   1   0

In [79]: df2.loc[:,df_sub.columns] = df_sub

In [80]: df2
Out[80]: 
variable1   A               B    
variable2   a       b       a   b
variable3   x   y   x   y   x   y
index                            
0           1 NaN NaN NaN NaN NaN
1         NaN NaN   0 NaN NaN NaN
2         NaN NaN NaN NaN   0 NaN
3         NaN NaN NaN NaN NaN   1
4         NaN   1 NaN NaN NaN   1
5         NaN   1 NaN NaN NaN   0
6         NaN   1 NaN NaN   0   0
7         NaN   1 NaN   1 NaN   0

答案 1 :(得分:0)

自pandas 0.14.0以来,可能有更好的方法:

df2.loc[:, (slice(None), slice(None), 'y')] = df2.loc[:, (slice(None), slice(None), 'y')].ffill()

idx = pd.IndexSlice df2.loc[:, (idx[:,:,'y'])] = df2.loc[:, (idx[:,:,'y'])].ffill()