无法计算大于20的阶乘! !怎么办?

时间:2013-10-07 17:01:12

标签: c gcc factorial

我使用无符号长整数格式来计算大因子。但是我的代码在某些时候失败了你能看一下吗?实际上它是指数函数的泰勒展开的更大代码的一部分,但是这一部分在这一点上是无关紧要的。我将不胜感激任何建议。

由于

#include <stdio.h>
#include <math.h>
//We need to write a factorial function beforehand, since we
//have factorial in the denominators.
//Remembering that factorials are defined for integers; it is
//possible to define factorials of non-integer numbers using
//Gamma Function but we will omit that.
//We first declare the factorial function as follows:
unsigned long long factorial (int);
//Long long integer format only allows numbers in the order of 10^18 so 
//we shall use the sign bit in order to increase our range.
//Now we define it,
unsigned long long
factorial(int n)
{
//Here s is the free parameter which is increased by one in each step and
//pro is the initial product and by setting pro to be 0 we also cover the
//case of zero factorial.
    int s = 1;
    unsigned long long pro = 1;
    if (n < 0)
        printf("Factorial is not defined for a negative number \n");
    else {
    while (n >= s) { 
    printf("%d \n", s);
    pro *= s;
    s++;
    printf("%llu \n", pro);
    }
    return pro;
    }
}

int main ()
{
    int x[12] = { 1, 5, 10, 15, 20, 100, -1, -5, -10, -20, -50, -100};
//Here an array named "calc" is defined to store 
//the values of x.
unsigned long long  k = factorial(25);
printf("%llu \n", k);

//int k;
////The upper index controls the accuracy of the Taylor Series, so
////it is suitable to make it an adjustable parameter. 
//int p = 500;
//for ( k = 0; k < p; k++);

}

7 个答案:

答案 0 :(得分:15)

无符号多头的限制是18446744073709551615,或约1.8e + 19。 20!约为2.4e + 18,因此在范围内,不过21!约为5.1e + 19,超过无符号长长的最大尺寸。

您可能会发现这有用:Are there types bigger than long long int in C++?

答案 1 :(得分:7)

你的整数类型溢出了。 unsigned long long可能是64位长。

  • 20!是0x21c3_677c_82b4_0000适合。
  • 21! 0x2_c507_7d36_b8c4_0000是不合适的。

您可以查看GMP之类的库,这些库可以启用任意大整数。


扩展GMP评论。以下是使用GMP计算阶乘的一些代码:

void factorial(unsigned long long n, mpz_t result) {
    mpz_set_ui(result, 1);

    while (n > 1) {
        mpz_mul_ui(result, result, n);
        n = n-1;
    }
}

int main() {
    mpz_t fact;
    mpz_init(fact);

    factorial(100, fact);

    char *as_str = mpz_get_str(NULL, 16, fact);
    printf("%s\n", as_str);

    mpz_clear(fact);
    free(as_str);
}

这将计算factorial(100),结果为:

0x1b30964ec395dc24069528d54bbda40d16e966ef9a70eb21b5b2943a321cdf10391745570cca9420c6ecb3b72ed2ee8b02ea2735c61a000000000000000000000000

只是为了好玩,这是C ++版本。构造函数,析构函数和运算符重载往往使这些东西的C ++版本看起来更清晰。结果与以前相同。

#include <gmpxx.h>
#include <iostream>

int main() {
    mpz_class fact = 1;

    for (int i=2; i<=100; ++i)
        fact *= i;

    std::cout << "0x" << fact.get_str(16) << "\n";
}

答案 2 :(得分:5)

unsigned long long的范围通常为 0 2 ^ 64 - 1 18,446,744,073,709,551,615)。 21!超出这个范围。

答案 3 :(得分:4)

事实上:

2^64 = 18446744073709551616
21!  = 51090942171709440000
20!  =  2432902008176640000

顺便说一下,要计算一系列的结果(例如泰勒),你不应该分别计算每个词;这肯定会带给你这样的问题。相反,尝试通过重复使用前一个术语来计算每个术语。

例如,cos的泰勒系列需要以下术语的总和:

(-1)^i * (x^(2*i)) / (2i)!

很容易看出,每个术语都可以从前一个术语轻松计算出来:

newterm = - oldterm * x^2 / ((2i+1)*(2i+2))

所以,我相信你不需要计算大因子,因为你正在尝试做什么。另一方面,如果需要,您将不得不使用大型数据库,例如gmp

答案 4 :(得分:2)

factorial(25)应给出结果18,446,744,073,709,551,615,其大于无符号长long Data Type Ranges

的范围

答案 5 :(得分:2)

长长的只是如此之大,因此只能代表如此大的数字。如果你需要一个更大整数的精确表示,你需要使用其他东西(一些你自己制作的第三方库或某种数据类型);如果你不需要它,那么你可以改用double。

答案 6 :(得分:0)

我写的一个简单的算法。但是它在Java中.. 您可以在大约15分钟内计算出1000的阶乘。

该算法适用于我们在小学学习的基本公式。

/* FOR BEST RESULT DON'T CHANGE THE CODE UNTIL YOU KNOW WHAT YOU'RE DOING */
    public String factorial(int number){
        if(number == 0) return "1";
        String result = "1";
        for(int i = 0; i < number; i++){
            result = *longNumberMultiplyingAlgorithm*(result, "" + (i + 1));
        }
        return result;  
    }

    public String longNumberMultiplyingAlgorithm(String number1, String number2){
            int maxLength = Math.max(number1.length(), number2.length());
            int a = 0;
            String[] numbers = new String[maxLength];

            if(number2.length() > number1.length()){
                String t = number1;
                number1 = number2;
                number2 = t;
            }       

            for(int i = 0; i < number1.length(); i++){
                numbers[i] = "";
                a = 0;
                for(int j = 0; j < number2.length(); j++){
                    int result = Integer.parseInt(String.valueOf(number1.charAt(number1.length() - i - 1))) * Integer.parseInt(String.valueOf(number2.charAt(number2.length() - j - 1)));
                    if(result + a < 10){
                        numbers[i] = (result + a) + "" + numbers[i];
                        a = 0;
                    }else{
                        result += a;
                        a = (int)((result + 0.0) / 10);
                        result -= a * 10;
                        numbers[i] = result + "" + numbers[i];
                    }
                }
                if(a != 0){
                    numbers[i] = a + "" + numbers[i];
                }
                for(int k = 0; k < i; k++){
                    numbers[i] += "0";
                }
            }
            return longNumberAdditionAlgorithm(numbers);
        }

    private String longNumberAdditionAlgorithm(String[] numbers) {
            String final_number = "0";
            for(int l = 0; l < numbers.length; l++){
                int maxLength = Math.max(final_number.length(), numbers[l].length());
                String number = "";
                int[] n = new int[maxLength];
                int a = 0;
                for(int i = 0; i < n.length; i++){
                    int result = 0;
                    if(i >= final_number.length()){
                        result = Integer.parseInt(String.valueOf(numbers[l].charAt(numbers[l].length() - i - 1)));
                    }else
                    if(i >= numbers[l].length()){
                        result = Integer.parseInt(String.valueOf(final_number.charAt(final_number.length() - i - 1)));
                    }else{
                        result = Integer.parseInt(String.valueOf(final_number.charAt(final_number.length() - i - 1))) + Integer.parseInt(String.valueOf(numbers[l].charAt(numbers[l].length() - i - 1)));
                    }
                    if(result + a < 10){
                        number = (result + a) + "" + number;
                        a = 0;
                    }else{
                        result -= 10;
                        number = (result + a) + "" + number;
                        a = 1;
                    }
                }
                if(a == 1){
                    number = a + "" + number;
                }
                final_number = number;
            }
            return final_number;
        }