我需要在图像中找到所有闭合的形状并获得它的坐标。我需要在Python中使用它,但是如何做到这一点的解释也就足够了。如果你愿意,可以随意回答Python代码。我已经在Google上搜索了很多,发现了这两件事:
第一个链接中的答案描绘了所有区域,而不是给出封闭区域的坐标。我不理解第二个链接中的第一个答案,一些评论说它不起作用。第二个链接中的第二个答案不适用于这样的图像:
我也尝试制作自己的代码,但计算花费的时间超过一秒,而且速度要快得多(不是真的,非常快,但至少快于1/10秒)。
我如何找到这些区域?
PS:图像中有些线条不是闭合形状的一部分。
答案 0 :(得分:4)
这是一个函数find_groups
,它将图像中的每个像素分为三个类别之一:自由,闭合和边框,以及函数print_groups
以便以可读的方式对其进行测试。
from collections import namedtuple
from copy import deepcopy
def find_groups(inpixels):
"""
Group the pixels in the image into three categories: free, closed, and
border.
free: A white pixel with a path to outside the image.
closed: A white pixels with no path to outside the image.
border: A black pixel.
Params:
pixels: A collection of columns of rows of pixels. 0 is black 1 is
white.
Return:
PixelGroups with attributes free, closed and border.
Each is a list of tuples (y, x).
"""
# Pad the entire image with white pixels.
width = len(inpixels[0]) + 2
height = len(inpixels) + 2
pixels = deepcopy(inpixels)
for y in pixels:
y.insert(0, 1)
y.append(1)
pixels.insert(0, [1 for x in range(width)])
pixels.append([1 for x in range(width)])
# The free pixels are found through a breadth first traversal.
queue = [(0,0)]
visited = [(0,0)]
while queue:
y, x = queue.pop(0)
adjacent = ((y+1, x), (y-1, x), (y, x+1), (y, x-1))
for n in adjacent:
if (-1 < n[0] < height and -1 < n[1] < width and
not n in visited and
pixels[n[0]][n[1]] == 1):
queue.append(n)
visited.append(n)
# Remove the padding and make the categories.
freecoords = [(y-1, x-1) for (y, x) in visited if
(0 < y < height-1 and 0 < x < width-1)]
allcoords = [(y, x) for y in range(height-2) for x in range(width-2)]
complement = [i for i in allcoords if not i in freecoords]
bordercoords = [(y, x) for (y, x) in complement if inpixels[y][x] == 0]
closedcoords = [(y, x) for (y, x) in complement if inpixels[y][x] == 1]
PixelGroups = namedtuple('PixelGroups', ['free', 'closed', 'border'])
return PixelGroups(freecoords, closedcoords, bordercoords)
def print_groups(ysize, xsize, pixelgroups):
ys= []
for y in range(ysize):
xs = []
for x in range(xsize):
if (y, x) in pixelgroups.free:
xs.append('.')
elif (y, x) in pixelgroups.closed:
xs.append('X')
elif (y, x) in pixelgroups.border:
xs.append('#')
ys.append(xs)
print('\n'.join([' '.join(k) for k in ys]))
现在使用它:
pixels = [[0, 1, 0, 0, 1, 1],
[1, 0, 1, 1, 0, 1],
[1, 0, 1, 1, 0, 1],
[1, 0 ,1 ,1 ,0, 1],
[1, 0, 1 ,0 ,1, 1],
[1, 0, 0, 1, 1, 1],
[1, 1, 1, 1, 1, 1]]
pixelgroups = find_groups(pixels)
print_groups(7, 6, pixelgroups)
print("closed: " + str(pixelgroups.closed))
输出:
# . # # . .
. # X X # .
. # X X # .
. # X X # .
. # X # . .
. # # . . .
. . . . . .
closed: [(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2)]
您会注意到随机点和条纹被归类为边框。但是你可以随时区分真实的边界和条纹。
# pseudo code
realborders = [i for i in pixelgroups.border if i has an adjacent closed pixel]
streaks = [otherwise]