给定一串数字和多个乘法运算符,可以计算的最高数字是多少?

时间:2013-10-01 22:05:32

标签: algorithm math language-agnostic dynamic-programming

这是我遇到的一个采访问题,我很尴尬地被它弄得很难过。想知道是否有人能想出答案并为它提供重要的O符号。

Question: Given a string of numbers and a number of multiplication operators, 
          what is the highest number one can calculate? You must use all operators

您无法重新排列字符串。您只能使用乘法运算符来计算数字。

E.g。 String = "312",1乘法运算符

您可以3*12 = 3631*2= 62。后者显然是正确的答案。

9 个答案:

答案 0 :(得分:20)

我在这里假设乘法运算符所需的数字 m 是问题的一部分,以及数字的字符串 s

您可以使用tabular method(又名“动态编程”)解决此问题,其中O( m | s | 2 )数字乘以O(| s |)位数。 optimal computational complexity of multiplication未知,但使用教科书乘法算法,这总体上是O( m | s | 4 )。< / p>

(想法是计算每个子问题的答案,包括字符串的尾部和数字 m '≤ m 。有O( m | s |)这样的子问题并解决每个问题涉及O(| s |)数字乘以O(| s |)数字长。)

在Python中,您可以使用Python装饰器库中的@memoized decorator对此进行编程:

@memoized
def max_product(s, m):
    """Return the maximum product of digits from the string s using m
    multiplication operators.

    """
    if m == 0:
        return int(s)
    return max(int(s[:i]) * max_product(s[i:], m - 1)
               for i in range(1, len(s) - m + 1))

如果您已经习惯了自下而上的动态编程形式,那么这种自上而下的形式可能看起来很奇怪,但事实上@memoized decorator维护了{{1函数的属性:

cache

答案 1 :(得分:3)

java版本,虽然Python已经显示出它的功能优势并打败了我:

private static class Solution {
    BigInteger product;
    String expression;
}

private static Solution solve(String digits, int multiplications) {
    if (digits.length() < multiplications + 1) {
        return null; // No solutions
    }
    if (multiplications == 0) {
        Solution solution = new Solution();
        solution.product = new BigInteger(digits);
        solution.expression = digits;
        return solution;
    }
    // Position of first '*':
    Solution max = null;
    for (int i = 1; i < digits.length() - (multiplications - 1); ++i) {
        BigInteger n = new BigInteger(digits.substring(0, i));
        Solution solutionRest = solve(digits.substring(i), multiplications - 1);
        n = n.multiply(solutionRest.product);
        if (max == null || n.compareTo(max.product) > 0) {
            solutionRest.product = n;
            solutionRest.expression = digits.substring(0, i) + "*"
                + solutionRest.expression;
            max = solutionRest;
        }
    }
    return max;
}

private static void test(String digits, int multiplications) {
    Solution solution = solve(digits, multiplications);
    System.out.printf("%s %d -> %s = %s%n", digits, multiplications,
            solution.expression, solution.product.toString());
}

public static void main(String[] args) {
    test("1826456903521651", 5);
}

输出

1826456903521651 5 -> 182*645*6*903*521*651 = 215719207032420

答案 2 :(得分:2)

这是一个迭代的动态编程解决方案。

the recursive version(应具有相似的运行时间)相反。

基本理念:

A[position][count]是使用position次乘法在count位置结束时可以获得的最高数字。

所以:

A[position][count] = max(for i = 0 to position
                           A[i][count-1] * input.substring(i, position))

对每个位置和每个计数执行此操作,然后将所需乘数中的每一个乘以剩余的整个字符串。

<强>复杂度:

给定一个字符串|s|并插入m个乘法运算符...

O(m|s|2g(s))其中g(s)the complexity of multiplication

Java代码:

static long solve(String digits, int multiplications)
{
  if (multiplications == 0)
     return Long.parseLong(digits);

  // Preprocessing - set up substring values
  long[][] substrings = new long[digits.length()][digits.length()+1];
  for (int i = 0; i < digits.length(); i++)
  for (int j = i+1; j <= digits.length(); j++)
     substrings[i][j] = Long.parseLong(digits.substring(i, j));

  // Calculate multiplications from the left
  long[][] A = new long[digits.length()][multiplications+1];
  A[0][0] = 1;
  for (int i = 1; i < A.length; i++)
  {
     A[i][0] = substrings[0][i];
     for (int j = 1; j < A[0].length; j++)
     {
        long max = -1;
        for (int i2 = 0; i2 < i; i2++)
        {
           long l = substrings[i2][i];
           long prod = l * A[i2][j-1];
           max = Math.max(max, prod);
        }
        A[i][j] = max;
     }
  }

  // Multiply left with right and find maximum
  long max = -1;
  for (int i = 1; i < A.length; i++)
  {
     max = Math.max(max, substrings[i][A.length] * A[i][multiplications]);
  }
  return max;
}

一项非常基本的测试:

System.out.println(solve("99287", 1));
System.out.println(solve("99287", 2));
System.out.println(solve("312", 1));

打印:

86304
72036
62

是的,它只打印最大值。如果需要,实际打印总和并不太难。

答案 3 :(得分:1)

这是另一个Java解决方案。 (我知道它对于“312”和1次乘法是正确的,我认为它适用于其他人......

你必须记住如何自己获取递归方法的复杂性,哈哈。

package test;

import java.util.ArrayList;
import java.util.List;

public class BiggestNumberMultiply {

    private static class NumberSplit{
        String[] numbers;
        long result;
        NumberSplit(String[] numbers){
            this.numbers=numbers.clone();
            result=1;
            for(String n:numbers){
                result*=Integer.parseInt(n);
            }
        }
        @Override
        public String toString() {
            StringBuffer sb=new StringBuffer();
            for(String n:numbers){
                sb.append(n).append("*");
            }
            sb.replace(sb.length()-1, sb.length(), "=")
                .append(result);
            return sb.toString();
        }
    }

    public static void main(String[] args) {
        String numbers = "312";
        int numMults=1;

        int numSplits=numMults;

        List<NumberSplit> splits = new ArrayList<NumberSplit>();
        splitNumbersRecursive(splits, new String[numSplits+1], numbers, numSplits);
        NumberSplit maxSplit = splits.get(0);
        for(NumberSplit ns:splits){
            System.out.println(ns);
            if(ns.result>maxSplit.result){
                maxSplit = ns;
            }
        }
        System.out.println("The maximum is "+maxSplit);
    }

    private static void splitNumbersRecursive(List<NumberSplit> list, String[] splits, String numbers, int numSplits){
        if(numSplits==0){
            splits[splits.length-1] = numbers;
            return;
        }
        for(int i=1; i<=numbers.length()-numSplits; i++){
            splits[splits.length-numSplits-1] = numbers.substring(0,i);
            splitNumbersRecursive(list, splits, numbers.substring(i), numSplits-1);
            list.add(new NumberSplit(splits));
        }
    }
}

答案 4 :(得分:1)

又一个Java实现。这是DP自上而下,也就是memoization。它还打印出除最大产品之外的实际组件。

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class MaxProduct {

    private static Map<Key, Result> cache = new HashMap<>();

    private static class Key {
        int operators;
        int offset;

        Key(int operators, int offset) {
            this.operators = operators;
            this.offset = offset;
        }

        @Override
        public int hashCode() {
            final int prime = 31;
            int result = 1;
            result = prime * result + offset;
            result = prime * result + operators;
            return result;
        }

        @Override
        public boolean equals(Object obj) {
            if (this == obj) {
                return true;
            }
            if (obj == null) {
                return false;
            }
            if (!(obj instanceof Key)) {
                return false;
            }
            Key other = (Key) obj;
            if (offset != other.offset) {
                return false;
            }
            if (operators != other.operators) {
                return false;
            }
            return true;
        }
    }

    private static class Result {
        long product;
        int offset;
        Result prev;

        Result (long product, int offset) {
            this.product = product;
            this.offset = offset;
        }

        @Override
        public String toString() {
            return "product: " + product + ", offset: " + offset;
        }
    }

    private static void print(Result result, String input, int operators) {
        System.out.println(operators + " multiplications on: " + input);
        Result current = result;
        System.out.print("Max product: " + result.product + " = ");
        List<Integer> insertions = new ArrayList<>();
        while (current.prev != null) {
            insertions.add(current.offset);
            current = current.prev;
        }

        List<Character> inputAsList = new ArrayList<>();
        for (char c : input.toCharArray()) {
            inputAsList.add(c);
        }

        int shiftedIndex = 0;
        for (int insertion : insertions) {
            inputAsList.add(insertion + (shiftedIndex++), '*');
        }

        StringBuilder sb = new StringBuilder();
        for (char c : inputAsList) {
            sb.append(c);
        }

        System.out.println(sb.toString());
        System.out.println("-----------");
    }

    public static void solve(int operators, String input) {
        cache.clear();
        Result result = maxProduct(operators, 0, input);
        print(result, input, operators);
    }

    private static Result maxProduct(int operators, int offset, String input) {
        String rightSubstring = input.substring(offset);

        if (operators == 0 && rightSubstring.length() > 0) return new Result(Long.parseLong(rightSubstring), offset);
        if (operators == 0 && rightSubstring.length() == 0) return new Result(1, input.length() - 1);

        long possibleSlotsForFirstOperator = rightSubstring.length() - operators;
        if (possibleSlotsForFirstOperator < 1) throw new IllegalArgumentException("too many operators");

        Result maxProduct = new Result(-1, -1);
        for (int slot = 1; slot <= possibleSlotsForFirstOperator; slot++) {
            long leftOperand = Long.parseLong(rightSubstring.substring(0, slot));
            Result rightOperand;
            Key key = new Key(operators - 1, offset + slot);
            if (cache.containsKey(key)) {
                rightOperand = cache.get(key);
            } else {
                rightOperand = maxProduct(operators - 1, offset + slot, input);
            }

            long newProduct = leftOperand * rightOperand.product;
            if (newProduct > maxProduct.product) {
                maxProduct.product = newProduct;
                maxProduct.offset = offset + slot;
                maxProduct.prev = rightOperand;
            }
        }

        cache.put(new Key(operators, offset), maxProduct);
        return maxProduct;
    }

    public static void main(String[] args) {
        solve(5, "1826456903521651");
        solve(1, "56789");
        solve(1, "99287");
        solve(2, "99287");
        solve(2, "312");
        solve(1, "312");
    }

}

Bonus :为任何有兴趣的人提供强力实施。不是特别聪明,但它使追溯步骤直截了当。

import java.util.ArrayList;
import java.util.List;

public class MaxProductBruteForce {

    private static void recurse(boolean[] state, int pointer, int items, List<boolean[]> states) {
        if (items == 0) {
            states.add(state.clone());
            return;
        }

        for (int index = pointer; index < state.length; index++) {
            state[index] = true;
            recurse(state, index + 1, items - 1, states);
            state[index] = false;
        }
    }

    private static List<boolean[]> bruteForceCombinations(int slots, int items) {
        List<boolean[]> states = new ArrayList<>(); //essentially locations to insert a * operator
        recurse(new boolean[slots], 0, items, states);
        return states;
    }

    private static class Tuple {
        long product;
        List<Long> terms;

        Tuple(long product, List<Long> terms) {
            this.product = product;
            this.terms = terms;
        }

        @Override
        public String toString() {
            return product + " = " + terms.toString();
        }
    }

    private static void print(String input, int operators, Tuple result) {
        System.out.println(operators + " multiplications on: " + input);
        System.out.println(result.toString());
        System.out.println("---------------");
    }

    public static void solve(int operators, String input) {
        Tuple result = maxProduct(input, operators);
        print(input, operators, result);
    }

    public static Tuple maxProduct(String input, int operators) {
        Tuple maxProduct = new Tuple(-1, null);

        for (boolean[] state : bruteForceCombinations(input.length() - 1, operators)) {
            Tuple newProduct = getProduct(state, input);
            if (maxProduct.product < newProduct.product) {
                maxProduct = newProduct;
            }
        }

        return maxProduct;
    }

    private static Tuple getProduct(boolean[] state, String input) {
        List<Long> terms = new ArrayList<>();
        List<Integer> insertLocations = new ArrayList<>();
        for (int i = 0; i < state.length; i++) {
            if (state[i]) insertLocations.add(i + 1);
        }

        int prevInsert = 0;
        for (int insertLocation : insertLocations) {
            terms.add(Long.parseLong(input.substring(prevInsert, insertLocation))); //gradually chop off the string
            prevInsert = insertLocation;
        }

        terms.add(Long.parseLong(input.substring(prevInsert))); //remaining of string

        long product = 1;
        for (long term : terms) {
            product = product * term;
        }

        return new Tuple(product, terms);
    }

    public static void main(String[] args) {
        solve(5, "1826456903521651");
        solve(1, "56789");
        solve(1, "99287");
        solve(2, "99287");
        solve(2, "312");
        solve(1, "312");
    }

}

答案 5 :(得分:1)

此实现适用于@lars。

from __future__ import (print_function)
import collections
import sys

try:
    xrange
except NameError:  # python3
    xrange = range


def max_product(s, n):
    """Return the maximum product of digits from the string s using m
    multiplication operators.

    """
    # Guard condition.
    if len(s) <= n:
        return None

    # A type for our partial solutions.
    partial_solution = collections.namedtuple("product",
                                              ["value", "expression"])

    # Initialize the best_answers dictionary with the leading terms
    best_answers = {}
    for i in xrange(len(s)):
        term = s[0: i+1]
        best_answers[i+1] = partial_solution(int(term), term)

    # We then replace best_answers n times.
    for prev_product_count in [x for x in xrange(n)]:
        product_count = prev_product_count + 1
        old_best_answers = best_answers
        best_answers = {}
        # For each position, find the best answer with the last * there.
        for position in xrange(product_count+1, len(s)+1):
            candidates = []
            for old_position in xrange(product_count, position):
                prior_product = old_best_answers[old_position]
                term = s[old_position:position]
                value = prior_product.value * int(term)
                expression = prior_product.expression + "*" + term
                candidates.append(partial_solution(value, expression))
            # max will choose the biggest value, breaking ties by the expression
            best_answers[position] = max(candidates)

    # We want the answer with the next * going at the end of the string.
    return best_answers[len(s)]

print(max_product(sys.argv[1], int(sys.argv[2])))

以下是一个示例运行:

$ python mult.py 99287 2
product(value=72036, expression='9*92*87')

希望逻辑从实现中清楚。

答案 6 :(得分:1)

我发现上述DP解决方案有用但令人困惑。重复发生是有道理的,但我想在没有最终检查的情况下在一个表中完成所有操作。我花了很长时间来调试所有索引,所以我保留了一些解释。

回顾:

  1. 将T大小为N(因为数字0..N-1)初始化为k + 1(因为0..k乘法)。
  2. 表T(i,j)=使用字符串的i + 1个第一个数字(因为零索引)和j乘法的最大可能乘积。
  3. 基本情况:T(i,0)= 0..N-1中i的数字[0..i]。
  4. 重现:T(i,j)= max a (T(a,j-1)*个数字[a + 1..i])。即:将数字[0..i]分配到数字[0..a] *数字[a + 1..i]。并且因为这涉及乘法,所以子问题的乘法少一些,所以在j-1处搜索表。
  5. 最后答案存储在T(所有数字,所有乘法)或T(N-1,k)。
  6. 复杂度为O(N 2 k),因为a上的最大值是O(N),我们对每个数字(O(N))进行O(k)次。

    public class MaxProduct {
    
        public static void main(String ... args) {
            System.out.println(solve(args[0], Integer.parseInt(args[1])));
        }
    
        static long solve(String digits, int k) {
            if (k == 0)
                return Long.parseLong(digits);
    
            int N = digits.length();
            long[][] T = new long[N][k+1];
            for (int i = 0; i < N; i++) {
                T[i][0] = Long.parseLong(digits.substring(0,i+1));
                for (int j = 1; j <= Math.min(k,i); j++) {
                    long max = Integer.MIN_VALUE;
                    for (int a = 0; a < i; a++) {
                        long l = Long.parseLong(digits.substring(a+1,i+1));
                        long prod = l * T[a][j-1];
                        max = Math.max(max, prod);
                    }
                    T[i][j] = max;
                }
            }
            return T[N-1][k];
        }
    }
    

答案 7 :(得分:0)

考虑到这一点,这是受bars and stars问题影响的蛮力方法。

假设我们的号码是“12345”,我们需要使用2 *运营商。我们可以将字符串12345视为

1_2_3_4_5

我们可以将两个*运算符放在任何下划线上。由于有4个下划线和2个*运算符,因此有4个选择2(或6)种不同的方式来放置运算符。比较这6种可能性并获得最大数量。类似的方法可用于更大的字符串和更多的*运算符。

答案 8 :(得分:-2)

我很确定答案是简单地将* s放在最大数字之前,这样最大数字的影响最大。例如,如果我们有

 1826456903521651 

我们有五次乘法,这就是答案。

 1*82*645*6*903521*651 

所以运行时间是线性的。

编辑:好的,所以这是错的。我们有两个反例。