scikit中的TypeError-learn CountVectorizer

时间:2013-09-25 14:14:50

标签: python scikit-learn

我正在尝试使用scikit-learn进行一些文本分析。但是,当我尝试调用CountVectorizer时,会引发错误。示例代码和引发的错误如下:

    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> corpus = [  'This is the first document.', 'This is the second second document.',  'And    the third one.',  'Is this the first document?', ]
    >>> vectorizer = CountVectorizer(min_df=1)
    >>> X = vectorizer.fit_transform(corpus)
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "/Library/Python/2.6/site-packages/sklearn/feature_extraction/text.py", line 789, in fit_transform
    vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary)
    File "/Library/Python/2.6/site-packages/sklearn/feature_extraction/text.py", line 716, in _count_vocab
    vocabulary = defaultdict(None)
    TypeError: first argument must be callable

这是我的安装中的错误还是什么?其他例子工作正常。

1 个答案:

答案 0 :(得分:1)

总结评论中的讨论:这是Python 2.6.1中的一个错误,已经修复了Python 2.6的更新版本(以及后来的2.7 +,3.2 + ...)。