我必须为函数绘制轮廓和线框图。这是我到目前为止的代码:
# Number of uniformly ditributed random numbers
n = 2000
def func_vec(x1s, x2s):
return x1s * x1s + 4 * x2s * x2s
np.random.seed()
x1s = np.random.uniform(-1, 1, n)
x2s = np.random.uniform(-1, 1, n)
ys = func_vec(x1s, x2s)
fig = plt.figure()
# Scatter
ax1 = fig.add_subplot(1, 2, 1)
ax1.scatter(x1s, x2s, color = 'g', s = 2, edgecolor = 'none')
ax1.set_ylim([-1,1])
ax1.set_xlim([-1,1])
# Contour
ax1.contour(x2s, x1s, ys[np.newaxis,:].repeat(n, axis = 0))
# 3D visualization
ax2 = fig.add_subplot(1, 2, 2, projection = '3d')
X = x1s
Y = x2s
Z = ys
ax2.plot_wireframe(X, Y, Z, rstride = 1, cstride = 1)
plt.show()
我不明白的是contour()
和plot_firewrame()
实际上如何运作?有人可以这么善良并向我解释(在指定功能的背景下)?此外,我应该如何指定X,Y和Z?
这是情节现在的样子:
这就是它应该是什么样子(散布在上面工作正常):
答案 0 :(得分:2)
这是生成正确图表的代码。任何与此斗争的人都应该发现代码几乎不言自明:
# Number of uniformly ditributed random numbers
n = 2000
def func_vec(x1s, x2s):
return x1s * x1s + 4 * x2s * x2s
np.random.seed()
x1s = np.random.uniform(-1, 1, n)
x2s = np.random.uniform(-1, 1, n)
ys = func_vec(x1s, x2s)
fig = plt.figure(22)
# Scatter
ax1 = fig.add_subplot(1, 2, 1)
ax1.scatter(x1s, x2s, color = 'g', s = 2, edgecolor = 'none')
ax1.set_ylim([-1,1])
ax1.set_xlim([-1,1])
# Contour
xi = np.linspace(-1,1,20)
yi = np.linspace(-1,1,20)
zi = griddata((x2s, x1s), ys, (xi[None,:], yi[:,None]), method = 'cubic')
ax1.contour(xi, yi, zi, 6, linewidths = 1, colors = ('#0000ff', '#0099ff', '#009999', '#999900', '#ff9900', '#ff0000'))
# 3D visualization
ax2 = fig.add_subplot(1, 2, 2, projection = '3d')
X, Y = np.meshgrid(xi, yi)
ax2.plot_wireframe(X, Y, zi, rstride = 1, cstride = 1)
ax2.view_init(28, -144)
plt.show()