我在SNMPV2实现中使用boost :: asio :: ip :: udp :: resolver来确定主机是否可以访问。
using Resolver = boost::asio::ip::udp::resolver;
Resolver resolver(ioService);
Resolver::query query(connectOptions.getHost(),
connectOptions.getPort());
Resolver::iterator endpointIterator;
BOOST_LOG_SEV(logger, Severity::debug) << "Waiting for async resolve";
endpointIterator = resolver.async_resolve(query, yield);
BOOST_LOG_SEV(logger, Severity::debug) << "Async resolve done";
if (endpointIterator == Resolver::iterator{}) { // unreachable host
using namespace boost::system;
throw system_error{error_code{SnmpWrapperError::BadHostname}};
}
我有一个测试用例,我测试当查询不存在的主机名和exitent主机名时发生的事情并行:
2013-09-16 10:45:28.687001: [DEBUG ] 0x88baf8 SnmpConnection: connect
2013-09-16 10:45:28.687396: [DEBUG ] 0x88baf8 SnmpConnection: host: non_existent_host_name_
2013-09-16 10:45:28.687434: [DEBUG ] 0x88baf8 SnmpConnection: port: 1611
2013-09-16 10:45:28.687456: [DEBUG ] 0x88baf8 SnmpConnection: Waiting for async resolve
2013-09-16 10:45:28.687675: [DEBUG ] 0x88c608 SnmpConnection: connect
2013-09-16 10:45:28.687853: [DEBUG ] 0x88c608 SnmpConnection: host: 127.0.0.1
2013-09-16 10:45:28.687883: [DEBUG ] 0x88c608 SnmpConnection: port: 1611
2013-09-16 10:45:28.687904: [DEBUG ] 0x88c608 SnmpConnection: Waiting for async resolve
2013-09-16 10:45:31.113527: [ERROR ] 0x88baf8 SnmpConnection: Host not found (authoritative)
2013-09-16 10:45:31.113708: [DEBUG ] 0x88c608 SnmpConnection: Async resolve done
2013-09-16 10:45:31.113738: [DEBUG ] 0x88c608 SnmpConnection: Connecting to 127.0.0.1:1611
...
从日志中可以看出,具有可到达地址的对象被阻止,直到另一个人的解析完成并出现错误(3秒)。 我的假设是Asio解析器服务使用一个线程,因此对一个无法访问的主机的一个查询可能阻止处理即将发生的解析请求。
解决方法是在更多线程上运行解析器服务,这可能吗?或者是否有可能有一个解析器服务,它可以像udp服务一样工作(而不是使用:: getaddrinfo)?
答案 0 :(得分:6)
如documentation所述,Boost.Asio将在每io_service
创建一个额外的线程,以便在第一次调用resolver::async_resolve()
时模拟异步主机解析。
只有在与io_service
s关联的resolver
上启动异步解析操作时,创建多个io_service
对象才允许并发主机解析。例如,以下代码不会执行并发主机解析,因为两个解析器都使用相同的服务:
boost::asio::io_service service1;
boost::asio::ip::udp::resolver resolver1(service1); // using service1
boost::asio::ip::udp::resolver resolver2(service1); // using service1
resolver1.async_resolve(...);
resolver2.async_resolve(...);
另一方面,以下将执行并发主机解析,因为每个解析器使用不同的服务:
boost::asio::io_service service1;
boost::asio::io_service service2;
boost::asio::ip::udp::resolver resolver1(service1); // using service1
boost::asio::ip::udp::resolver resolver2(service2); // using service2
resolver1.async_resolve(...);
resolver2.async_resolve(...);
假设resolver
每io_service
,为了获得并发性,将解析操作分派给不同的解析器成为应用程序的责任。一个简单的工作分配策略,如循环法,可能就足够了。
另一方面,可以将此职责委托给io_service
,允许它以与Boost.Asio在内部执行的方式类似的方式分发将模拟异步主机解析的工作。同步resolver::resolve()
成员函数在调用线程中执行工作。因此,应用程序可以创建由线程池提供服务的io_service
。当需要进行异步主机解析时,会将作业发布到io_service
中,该作业将创建创建resolver
并执行同步解析,并使用结果调用用户处理程序。下面是一个完整的基本示例,其中resolver
类使用线程池模拟异步主机解析:
#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/optional.hpp>
#include <boost/thread.hpp>
/// @brief Type used to emulate asynchronous host resolution with a
/// dedicated thread pool.
class resolver
{
public:
resolver(const std::size_t pool_size)
: work_(boost::ref(io_service_))
{
// Create pool.
for (std::size_t i = 0; i < pool_size; ++i)
threads_.create_thread(
boost::bind(&boost::asio::io_service::run, &io_service_));
}
~resolver()
{
work_ = boost::none;
threads_.join_all();
}
template <typename QueryOrEndpoint, typename Handler>
void async_resolve(QueryOrEndpoint query, Handler handler)
{
io_service_.post(boost::bind(
&resolver::do_async_resolve<QueryOrEndpoint, Handler>, this,
query, handler));
}
private:
/// @brief Resolve address and invoke continuation handler.
template <typename QueryOrEndpoint, typename Handler>
void do_async_resolve(const QueryOrEndpoint& query, Handler handler)
{
typedef typename QueryOrEndpoint::protocol_type protocol_type;
typedef typename protocol_type::resolver resolver_type;
// Resolve synchronously, as synchronous resolution will perform work
// in the calling thread. Thus, it will not use Boost.Asio's internal
// thread that is used for asynchronous resolution.
boost::system::error_code error;
resolver_type resolver(io_service_);
typename resolver_type::iterator result = resolver.resolve(query, error);
// Invoke user handler.
handler(error, result);
}
private:
boost::asio::io_service io_service_;
boost::optional<boost::asio::io_service::work> work_;
boost::thread_group threads_;
};
template <typename ProtocolType>
void handle_resolve(
const boost::system::error_code& error,
typename ProtocolType::resolver::iterator iterator)
{
std::stringstream stream;
stream << "handle_resolve:\n"
" " << error.message() << "\n";
if (!error)
stream << " " << iterator->endpoint() << "\n";
std::cout << stream.str();
std::cout.flush();
}
int main()
{
// Resolver will emulate asynchronous host resolution with a pool of 5
// threads.
resolver resolver(5);
namespace ip = boost::asio::ip;
resolver.async_resolve(
ip::udp::resolver::query("localhost", "12345"),
&handle_resolve<ip::udp>);
resolver.async_resolve(
ip::tcp::resolver::query("www.google.com", "80"),
&handle_resolve<ip::tcp>);
resolver.async_resolve(
ip::udp::resolver::query("www.stackoverflow.com", "80"),
&handle_resolve<ip::udp>);
resolver.async_resolve(
ip::icmp::resolver::query("some.other.address", "54321"),
&handle_resolve<ip::icmp>);
}
注释输出:
handle_resolve:
Success
127.0.0.1:12345 // localhost
handle_resolve:
Service not found // bogus
handle_resolve:
Success
173.194.77.147:80 // google
handle_resolve:
Success
198.252.206.16:80 // stackoverflow
答案 1 :(得分:1)
你需要的是两个io_service ioService
,因为每个都由一个线程运行。我的意思是你通过调用io_service::run
来阻止线程的正常执行。
我认为代码本身是正确的。