对于以下两个n
元素整数向量的乘法的乘法,可以更快(在代码所需的时间方面)替代:
{
// code for obtaining two n element int vectors, a and b
}
int temp = 0; // a temporary variable
for (int ii = 0; ii < n; ++ii)
temp += a[ii]*b[ii];
编辑: 收到了几个不错的想法。我必须检查每一个,看看哪一个是最好的。当然,每个回复都会告诉我一些新的东西。
答案 0 :(得分:6)
我能看到在C ++中加快速度的唯一方法是修复“循环携带依赖”,这意味着每次迭代必须等到前一个临时值可用于总和。这可以通过展开和使用几个累积变量来实现:
int t0=0, t1=0, t2=0, t3=0;
for (int ii = 0; ii < n; ii += 4) {
t0 += a[ii]*b[ii];
t1 += a[ii+1]*b[ii+1];
t2 += a[ii+2]*b[ii+2];
t3 += a[ii+3]*b[ii+3];
}
int temp = t0 + t1 + t2 + t3;
现代处理器可以在每个周期执行多个操作,但前提是没有依赖性。在我的系统上,这大约提高了20%。注意:n必须是4的倍数,或者你需要添加一个循环“epilog”来完成剩下的元素。测试和测量!我不知道4是否是“正确”的展开量。
通过调用特定于处理器的SIMD内在函数可以获得更多改进,但这不是标准的C ++。
答案 1 :(得分:1)
#include <valarray>
int main() {
std::valarray<int> a {1, 2, 3, 4, 5};
std::valarray<int> b {3, 4, 5, 6, 7};
auto c = (a * b).sum();
}
valarray可以使用SIMD和其他向量指令,尽管在常见的实现中似乎经常被忽略。
答案 2 :(得分:1)
只需使用C ++标准库:
#include<algorithm>
#include<iostream>
#include<vector>
int main() {
std::vector<double> x = {1, 2, 3};
std::vector<double> y = {4, 5, 6};
double xy = std::inner_product(x.begin(), x.end(), y.begin(), 0);
std::cout<<"inner product: "<<xy<<std::endl;
return 0;
}
出于好奇,我添加了以下时间信息。
源代码:
#include<algorithm>
#include<iostream>
#include<vector>
#include<random>
#include<boost/timer/timer.hpp>
int main(int argc, char* argv[]) {
// get the desired number of elements
if(argc!=2) {
std::cerr<<"usage: "<<argv[0]<<" N"<<std::endl;
return EXIT_FAILURE;
}
int N = std::stoi(argv[1]);
// set-up the random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(-100, 100);
// prepare the vectors
std::vector<double> x, y;
// fill the vectors with random numbers
auto rgen = [&dis, &gen]() { return dis(gen); };
std::generate_n(std::back_inserter(x), N, rgen);
std::generate_n(std::back_inserter(y), N, rgen);
// Heat-up the cache (try commenting-out this line and you'll see
// that the time increases for whatever algorithm you put firts)
double xy = std::inner_product(x.begin(), x.end(), y.begin(), 0.0);
std::cout<<"heated-up value: "<<xy<<std::endl;
{ // start of new timing scope
// write a message to the assembly source
boost::timer::auto_cpu_timer t;
asm("##### START OF ALGORITHMIC APPROACH #####");
double xy = std::inner_product(x.begin(), x.end(), y.begin(), 0.0);
asm("##### END OF ALGORITHMIC APPROACH #####");
std::cout<<"algorithmic value: "<<xy<<std::endl<<"timing info: ";
} // end of timing scope
{ // start of new timing scope
// write a message to the assembly source
boost::timer::auto_cpu_timer t;
asm("##### START OF HAND-CODED APPROACH #####");
double tmp = 0.0;
for(int k=0; k<N; k++) {
tmp += x[k] * y[k];
}
asm("##### END OF HAND-CODED APPROACH #####");
std::cout<<"hand-coded value: "<<tmp<<std::endl<<"timing info: ";
} // end of timing scope
return EXIT_SUCCESS;
}
环境:2.7 GHz Intel Core i7; OS X 10.7.4; gcc 4.8.1;
编译命令:g++ -O3 inner-product-assembly.cpp -std=c++11 -lboost_timer -lboost_system
样品运行:
[11:01:58 ~/research/c++] ./a.out 10
heated-up value: 8568.75
algorithmic value: 8568.75
timing info: 0.000006s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
hand-coded value: 8568.75
timing info: 0.000004s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
[11:01:59 ~/research/c++] ./a.out 100
heated-up value: -13072.2
algorithmic value: -13072.2
timing info: 0.000006s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
hand-coded value: -13072.2
timing info: 0.000004s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
[11:02:03 ~/research/c++] ./a.out 1000
heated-up value: 80389.1
algorithmic value: 80389.1
timing info: 0.000010s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
hand-coded value: 80389.1
timing info: 0.000007s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
[11:02:04 ~/research/c++] ./a.out 10000
heated-up value: 89753.7
algorithmic value: 89753.7
timing info: 0.000041s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
hand-coded value: 89753.7
timing info: 0.000039s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
[11:02:05 ~/research/c++] ./a.out 100000
heated-up value: -461750
algorithmic value: -461750
timing info: 0.000292s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
hand-coded value: -461750
timing info: 0.000282s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
[11:02:07 ~/research/c++] ./a.out 1000000
heated-up value: 2.52643e+06
algorithmic value: 2.52643e+06
timing info: 0.002702s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
hand-coded value: 2.52643e+06
timing info: 0.002660s wall, 0.000000s user + 0.000000s system = 0.000000s CPU (n/a%)
[11:02:09 ~/research/c++] ./a.out 10000000
heated-up value: 6.04128e+06
algorithmic value: 6.04128e+06
timing info: 0.026557s wall, 0.030000s user + 0.000000s system = 0.030000s CPU (113.0%)
hand-coded value: 6.04128e+06
timing info: 0.026335s wall, 0.030000s user + 0.000000s system = 0.030000s CPU (113.9%)
[11:02:11 ~/research/c++] ./a.out 100000000
heated-up value: 2.27043e+07
algorithmic value: 2.27043e+07
timing info: 0.264547s wall, 0.270000s user + 0.000000s system = 0.270000s CPU (102.1%)
hand-coded value: 2.27043e+07
timing info: 0.264346s wall, 0.260000s user + 0.000000s system = 0.260000s CPU (98.4%)
因此,只有使用较小的数组时,使用手动编码方法的速度优势似乎才有意义。超过10,000标记,我会认为它们的运行时间相同,但我更喜欢算法方法,因为它更易于编写和维护,并且它可能会受益于库的更新。
像往常一样,这个时间信息应该用一点点盐。
答案 3 :(得分:0)
快速回答:这可能是最快的解决方案。 答案:快速有两种定义。 如果您正在寻找一个快速而简单的解决方案,上述代码应该很适合。 如果您正在寻找快速运行的代码,我不知道是否使用while循环或使用库/包重新实现for循环将有所帮助。 祝你好运!