你好我有3个numpy数组,如下所示。
>>> print A
[[ 1. 0. 0.]
[ 3. 0. 0.]
[ 5. 2. 0.]
[ 2. 0. 0.]
[ 1. 2. 1.]]
>>> print B
[[ 5. 9. 9.]
[ 37. 8. 9.]
[ 49. 8. 3.]
[ 3. 3. 1.]
[ 4. 4. 5.]]
>>>
>>> print C
[[ 0. 0. 0.]
[ 0. 6. 0.]
[ 1. 4. 6.]
[ 6. 2. 0.]
[ 0. 5. 4.]]
我想将它们合并为
[[[ 1. 0. 0.]
[ 5. 9. 9.]
[ 0. 0. 0.]]
[[ 3. 0. 0.]
[ 37. 8. 9.]
[ 0. 6. 0.]]
[[ 5. 2. 0.]
[ 49. 8. 3.]
[ 1. 4. 6.]]
[[ 2. 0. 0.]
[ 3. 3. 1.]
[ 6. 2. 0.]]
[[ 1. 2. 1.]
[ 4. 4. 5.]
[ 0. 5. 4.]]]
那就是我想从每个数组中取一行。
谁能告诉我一个简单的方法呢?
我已经尝试了hstack
,vstack
。但他们没有给出理想的结果。
谢谢!
答案 0 :(得分:6)
使用np.stack
可以解决这个问题:
>>> np.stack([A, B, C], axis=1) # stack along a new axis in axis 1 of the result
array([[[ 1, 0, 0],
[ 5, 9, 9],
[ 0, 0, 0]],
[[ 3, 0, 0],
[37, 8, 9],
[ 0, 6, 0]],
[[ 5, 2, 0],
[49, 8, 3],
[ 1, 4, 6]],
[[ 2, 0, 0],
[ 3, 3, 1],
[ 6, 2, 0]],
[[ 1, 2, 1],
[ 4, 4, 5],
[ 0, 5, 4]]])
答案 1 :(得分:5)
使用numpy dstack
的解决方案:
>>> import numpy as np
>>> np.dstack((a,b,c)).swapaxes(1,2)
array([[[ 1, 0, 0],
[ 5, 9, 9],
[ 0, 0, 0]],
[[ 3, 0, 0],
[37, 8, 9],
[ 0, 6, 0]],
[[ 5, 2, 0],
[49, 8, 3],
[ 1, 4, 6]],
[[ 2, 0, 0],
[ 3, 3, 1],
[ 6, 2, 0]],
[[ 1, 2, 1],
[ 4, 4, 5],
[ 0, 5, 4]]])
答案 2 :(得分:4)
>>> np.hstack([a,b,c]).reshape((5,3,3))
array([[[ 1., 0., 0.],
[ 5., 9., 9.],
[ 0., 0., 0.]],
[[ 3., 0., 0.],
[ 37., 8., 9.],
[ 0., 6., 0.]],
[[ 5., 2., 0.],
[ 49., 8., 3.],
[ 1., 4., 6.]],
[[ 2., 0., 0.],
[ 3., 3., 1.],
[ 6., 2., 0.]],
[[ 1., 2., 1.],
[ 4., 4., 5.],
[ 0., 5., 4.]]])
答案 3 :(得分:2)
我认为我有一些有用的东西:
>>> print np.hstack([A[:, None, :], B[:, None, :], C[:, None, :]])
[[[ 1 0 0]
[ 5 9 9]
[ 0 0 0]]
[[ 3 0 0]
[37 8 9]
[ 0 6 0]]
[[ 5 2 0]
[49 8 3]
[ 1 4 6]]
[[ 2 0 0]
[ 3 3 1]
[ 6 2 0]]
[[ 1 2 1]
[ 4 4 5]
[ 0 5 4]]]
答案 4 :(得分:2)
>>> import numpy as np
>>> A = np.array([[1,0,0],[3,0,0],[5,2,0],[2,0,0],[1,2,1]])
>>> B = np.array([[5,9,9],[37,8,9],[49,8,3],[3,3,1],[4,4,5]])
>>> C = np.array([[0,0,0],[0,6,0],[1,4,6],[6,2,0],[0,5,4]])
>>> np.array([A,B,C]).swapaxes(1,0)
array([[[ 1, 0, 0],
[ 5, 9, 9],
[ 0, 0, 0]],
[[ 3, 0, 0],
[37, 8, 9],
[ 0, 6, 0]],
[[ 5, 2, 0],
[49, 8, 3],
[ 1, 4, 6]],
[[ 2, 0, 0],
[ 3, 3, 1],
[ 6, 2, 0]],
[[ 1, 2, 1],
[ 4, 4, 5],
[ 0, 5, 4]]])
我使用Ipython %%timeit
对答案进行了比较:
np.array([A,B,C]).swapaxes(1,0)
100000 loops, best of 3: 18.2 us per loop
np.dstack((A,B,C)).swapaxes(1,2)
100000 loops, best of 3: 19.8 us per loop
np.hstack([A,B,C]).reshape((5,3,3))
100000 loops, best of 3: 14.8 us per loop
np.hstack([A[:, None, :], B[:, None, :], C[:, None, :]])
100000 loops, best of 3: 17.2 us per loop
看起来@Viktor Kerkez的答案最快。
答案 5 :(得分:2)
无需使用vstack
,hstack
。只需使用np.swapaxes
:
>>> d=array([a, b, c])
>>> d
array([[[ 1, 0, 0],
[ 3, 0, 0],
[ 5, 2, 0],
[ 2, 0, 0],
[ 1, 2, 1]],
[[ 5, 9, 9],
[37, 8, 9],
[49, 8, 3],
[ 3, 3, 1],
[ 4, 4, 5]],
[[ 0, 0, 0],
[ 0, 6, 0],
[ 1, 4, 6],
[ 6, 2, 0],
[ 0, 5, 4]]])
>>> swapaxes(d, 0, 1)
array([[[ 1, 0, 0],
[ 5, 9, 9],
[ 0, 0, 0]],
[[ 3, 0, 0],
[37, 8, 9],
[ 0, 6, 0]],
[[ 5, 2, 0],
[49, 8, 3],
[ 1, 4, 6]],
[[ 2, 0, 0],
[ 3, 3, 1],
[ 6, 2, 0]],
[[ 1, 2, 1],
[ 4, 4, 5],
[ 0, 5, 4]]])