我有一个由正值和负值组成的矩阵。我需要做这些事情。
让u(i,j)
表示矩阵u
的像素。
u(i-1,j)
和u(i+1,j)
符号相反或u(i,j-1)
和u(i,j+1)
符号相反,则这些是网格中的像素。(2r+1)X(2r+1)
。我正在考虑r=1
因此我必须实际获得每个零交叉像素的8个邻域像素。 我在一个程序中完成了这个。请看下面的内容。
%// calculate the zero crossing pixels
front = isfront(u);
%// calculate the narrow band of around the zero crossing pixels
band = isband(u,front,1);
我还附加了isfront
和isband
函数。
function front = isfront( phi )
%// grab the size of phi
[n, m] = size(phi);
%// create an boolean matrix whose value at each pixel is 0 or 1
%// depending on whether that pixel is a front point or not
front = zeros( size(phi) );
%// A piecewise(Segmentation) linear approximation to the front is contructed by
%// checking each pixels neighbour. Do not check pixels on border.
for i = 2 : n - 1;
for j = 2 : m - 1;
if (phi(i-1,j)*phi(i+1,j)<0) || (phi(i,j-1)*phi(i,j+1)<0)
front(i,j) = 100;
else
front(i,j) = 0;
end
end
end
function band = isband(phi, front, width)
%// grab size of phi
[m, n] = size(phi);
%// width=r=1;
width = 1;
[x,y] = find(front==100);
%// create an boolean matrix whose value at each pixel is 0 or 1
%// depending on whether that pixel is a band point or not
band = zeros(m, n);
%// for each pixel in phi
for ii = 1:m
for jj = 1:n
for k = 1:size(x,1)
if (ii==x(k)) && (jj==y(k))
band(ii-1,jj-1) = 100; band(ii-1,jj) = 100; band(ii-1,jj+1) = 100;
band(ii ,jj-1) = 100; band(ii ,jj) = 100; band(ii,jj+1) = 100;
band(ii+1,jj-1) = 100; band(ii+1,jj) = 100; band(ii+1,jj+1) = 100;
end
end
end
end
输出如下:以及计算时间:
%// Computation time
%// for isfront function
Elapsed time is 0.003413 seconds.
%// for isband function
Elapsed time is 0.026188 seconds.
当我运行代码时,我确实得到了正确的答案,但任务的计算量太大了,我不喜欢。有没有更好的方法呢?特别是isband
功能?如何进一步优化我的代码?
提前致谢。
答案 0 :(得分:5)
根据EitanT的建议,至少bwmorph
已经做了你想做的事。
如果您无权访问图像处理工具箱,或只是坚持自己动手:
您可以使用矢量化
替换isfront
中的三重循环
front = zeros(n,m);
zero_crossers = ...
phi(1:end-2,2:end-1).*phi(3:end,2:end-1) < 0 | ...
phi(2:end-1,1:end-2).*phi(2:end-1,3:end) < 0;
front([...
false(1,m)
false(n-2,1) zero_crossers false(n-2,1)
false(1,m) ]...
) = 100;
您可以通过以下单循环替换isband
:
[n,m] = size(front);
band = zeros(n,m);
[x,y] = find(front);
for ii = 1:numel(x)
band(...
max(x(ii)-width,1) : min(x(ii)+width,n),...
max(y(ii)-width,1) : min(y(ii)+width,m)) = 1;
end
或者,正如米兰所建议的那样,您可以通过convolution:
应用图像扩张kernel = ones(2*width+1);
band = conv2(front, kernel);
band = 100 * (band(width+1:end-width, width+1:end-width) > 0);
应该更快。
您当然可以进行一些其他的小优化(isband
不需要phi
作为参数,您可以将front
作为逻辑数组传递,以便{{1}更快,等等。)
答案 1 :(得分:1)
如果您只对r == 1感兴趣,请查看makelut和相应的函数bwloolup。
[编辑]
% Let u(i,j) denote the pixels of the matrix u. Calculate the zero crossing
% pixels. These are the pixels in the grid if u(i-1,j) and u(i+1,j) are of
% opposite signs or u(i,j-1) and u(i,j+1) are of opposite signs.
% First, create a function which will us if a pixel is a zero crossing
% pixel, given its 8 neighbors.
% uSign = u>0; % Note - 0 is treated as negative here.
% uSign is 3x3, we are evaluating the center pixel uSign(2,2)
zcFun = @(uSign) (uSign(1,2)~=uSign(3,2)) || (uSign(2,1)~=uSign(2,3));
% Make a look up table which tells us what the output should be for the 2^9
% = 512 possible patterns of 3x3 arrays with 1's and 0's.
lut = makelut(zcFun,3);
% Test image
im = double(imread('pout.tif'));
% Create positve and negative values
im = im -mean(im(:));
% Apply lookup table
imSign = im>0;
imZC = bwlookup(imSign,lut);
imshowpair(im, imZC);