预测scikit学习时的内存错误

时间:2013-08-30 15:57:55

标签: scikit-learn

以下是我编写的代码片段,用于使用RFE和估算器LinearSVC进行特征选择,然后使用简化数据来拟合和预测KNeighborClassifier。

    clf = LinearSVC(C = 10, class_weight = 'auto')
    rfe = RFE(estimator = clf, n_features_to_select = 700, step = 42)
    rfe.fit(X, trainLabels)
    reduced_train_data = rfe.transform(X)
    print "reduced_train_data.shape ", reduced_train_data.shape
    reduced_test_data = rfe.transform(test)
    neigh = KNeighborsClassifier(n_neighbors=5, weights='distance', algorithm = 'ball_tree')
    print "knn initiated"
    neigh.fit(reduced_train_data, trainLabels)
    print "knn fitted"
    test_predict = neigh.predict(reduced_test_data)
    print "knn predicted"

以下是输出: reduced_train_data.shape(42000,700) knn发起 knn fit

然后我看到以下错误:

Traceback (most recent call last):
  File "E:\Coursera\KaggleDataProjects\DigitRecognition\main.py", line 74, in <module>
    test_predict = neigh.predict(reduced_test_data)
  File "C:\Python27\lib\site-packages\sklearn\neighbors\classification.py", line 146, in predict
    neigh_dist, neigh_ind = self.kneighbors(X)
  File "C:\Python27\lib\site-packages\sklearn\neighbors\base.py", line 313, in kneighbors
    return_distance=return_distance)
  File "binary_tree.pxi", line 1295, in sklearn.neighbors.ball_tree.BinaryTree.query (sklearn\neighbors\ball_tree.c:9889)
  File "C:\Python27\lib\site-packages\sklearn\utils\validation.py", line 91, in array2d
    X_2d = np.asarray(np.atleast_2d(X), dtype=dtype, order=order)
  File "C:\Python27\lib\site-packages\numpy\core\numeric.py", line 320, in asarray
    return array(a, dtype, copy=False, order=order)
MemoryError

每次通过稍微更改参数运行代码时都不会发生此错误。有人可以解释一下需要做些什么才能解决这个问题。

列车数据的初始尺寸(X)= 42000,784 测试数据的初始尺寸(测试)= 28000,784

0 个答案:

没有答案