具有多个分类解释变量的模型的系数估计

时间:2013-08-29 13:53:11

标签: r statistics contrast

我目前正在进行荟萃分析,研究伐木在热带森林中的影响。

作为其中的一部分,我一直在测试效果是否因区域和使用的记录方法而异。

我使用R。

中的 metafor 包来完成所有这些操作

我的数据如下:

structure(list(Method = structure(c(2L, 2L, 1L, 1L, 1L, 1L, 1L, 
2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("Conventional", "RIL"), class = "factor"), MU = c(192.96, 
252.41, 235.6, 258, 258, 399, 313, 409.8, 420.4, 333.47, 327.54, 
256, 228.1, 547.1, 453.3873094, 427.495, 346.8, 330.833333333333, 
343.3, 221.5, 194.8, 51.1, 276), SSU = c(3, 3, 30, 3, 3, 2, 5, 
17, 10, 4, 4, 4, 9, 15, 35, 10, 3, 3, 3, 3, 3, 3, 10), ML = c(157.03, 
171.97, 219.5, 198, 148, 191, 204, 315.3647059, 386.22, 135.8, 
211.78, 183.8, 159.9, 230.8, 97.00798294, 218.31, 279.933333333333, 
261.4, 249.733333333333, 118.6, 42.9, 18.7, 128.4), SSL = c(3, 
3, 10, 3, 3, 10, 5, 17, 10, 4, 4, 4, 9, 10, 131, 45, 3, 3, 3, 
3, 3, 3, 10), Region = structure(c(3L, 3L, 2L, 2L, 2L, 3L, 2L, 
2L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 3L
), .Label = c("Africa", "Americas", "Asia & Oceania"), class = "factor"), 
SDU = c(7.69030558560582, 12.1243556529821, 74.4902678207026, 
30, 30, 145, 107.33126291999, 64.9, 92.95, 40.73364703, 54.0371067, 
53.6, 98.1, 193.8, 16.13693527, 109.3250955, 28.21329474, 
30.91865671942, 32.220024829289, 37.065887281974, 96.4752299815865, 
37.4122974434878, 91.706052144883), SDL = c(8.46972844901181, 
7.81154914213564, 53.1262646908288, 18, 10, 324.8738217, 
84.970583144992, 44.90907399, 109.0794186, 20.75198304, 18.6400617, 
11.6, 88.2, 104.2, 4.008416039, 185.9464001, 29.85034897, 
28.7292533839639, 15.297494348204, 37.7587076050015, 32.5625551822949, 
7.44781847254617, 126.174878640718)), .Names = c("Method", 
"MU", "SSU", "ML", "SSL", "Region", "SDU", "SDL"), row.names = c(NA, 
23L), class = "data.frame")

然后我用它来计算我有数据的每个站点的效果大小和相关的SE,如下所示:

require("metafor")
ROM <- escalc(data=AGB, measure="ROM", m2i=MU, sd2i=SDU,
              n2i=SSU, m1i=ML, sd1i=SDL, n1i=SSL, append=TRUE)

我的问题是我不知道如何解释具有两个分类预测因子的模型的治疗对比。

我的'最佳'模型(AIC最低的模型)看起来像这样:

ROM.ma1 <- rma(yi,vi,mods=~Method+Region,method="ML",data=ROM)

使用随机效应模型。

summary(ROM.ma1)

告诉我们:

Mixed-Effects Model (k = 23; tau^2 estimator: ML)

  logLik  deviance       AIC       BIC  
 -4.2852   65.8950   18.5705   24.2479  

tau^2 (estimated amount of residual heterogeneity):     0.0634 (SE = 0.0241)
tau (square root of estimated tau^2 value):             0.2519
I^2 (residual heterogeneity / unaccounted variability): 90.58%
H^2 (unaccounted variability / sampling variability):   10.62

Test for Residual Heterogeneity: 
QE(df = 19) = 616.2226, p-val < .0001

Test of Moderators (coefficient(s) 2,3,4): 
QM(df = 3) = 17.0683, p-val = 0.0007

Model Results:

                      estimate      se     zval    pval    ci.lb   ci.ub   
intrcpt                -0.4392  0.3150  -1.3944  0.1632  -1.0566  0.1781   
MethodRIL               0.3544  0.1513   2.3420  0.0192   0.0578  0.6510  *
RegionAmericas          0.1027  0.3201   0.3208  0.7484  -0.5247  0.7301   
RegionAsia & Oceania   -0.3487  0.3068  -1.1365  0.2557  -0.9500  0.2526   

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

现在我了解截距是因子MethodRegion的第一级的组合。

我希望能够做的是计算每个组的系数估计值以及它们的置信区间,以便我可以绘制该测试的结果。

我有办法做到这一点吗?

我问了很多同事,但没有一个给我一个有用的回应。

提前致谢。

0 个答案:

没有答案