我一直在努力实现一个所有面向法线的网格指向外部。 为了实现这一点,我从* .ctm文件加载网格,然后遍历所有 使用十字产品确定正常的三角形和正常情况 指向负z方向,我翻转v1和v2(因此正常方向)。 完成此操作后,我将结果保存到* .ctm文件并使用Meshlab进行查看。
Meshlab中的结果仍然表明法线指向正面和正面 负z方向(可以从黑色三角形看到)。也在观看时 Meshlab中的法线它们实际上是指向后方。
有人可以就如何解决这个问题给我一些建议吗?
规范化部分的源代码是:
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZRGBA> ());
pcl::fromROSMsg (meshFixed.cloud,*cloud1);for(std::vector<pcl::Vertices>::iterator it = meshFixed.polygons.begin(); it != meshFixed.polygons.end(); ++it)
{
alglib::real_2d_array v0;
double _v0[] = {cloud1->points[it->vertices[0]].x,cloud1->points[it->vertices[0]].y,cloud1->points[it->vertices[0]].z};
v0.setcontent(3,1,_v0); //3 rows, 1col
alglib::real_2d_array v1;
double _v1[] = {cloud1->points[it->vertices[1]].x,cloud1->points[it->vertices[1]].y,cloud1->points[it->vertices[1]].z};
v1.setcontent(3,1,_v1); //3 rows, 1col
alglib::real_2d_array v2;
double _v2[] = {cloud1->points[it->vertices[2]].x,cloud1->points[it->vertices[2]].y,cloud1->points[it->vertices[2]].z};
v2.setcontent(1,3,_v2); //3 rows, 1col
alglib::real_2d_array normal;
normal = cross(v1-v0,v2-v0);
//if z<0 change indices order v1->v2 and v2->v1
alglib::real_2d_array normalizedNormal;
if(normal[2][0]<0)
{
int index1,index2;
index1 = it->vertices[1];
index2 = it->vertices[2];
it->vertices[1] = index2;
it->vertices[2] = index1;
//make normal of length 1
double normalScaling = 1.0/sqrt(dot(normal,normal));
normal[0][0] = -1*normal[0][0];
normal[1][0] = -1*normal[1][0];
normal[2][0] = -1*normal[2][0];
normalizedNormal = normalScaling * normal;
}
else
{
//make normal of length 1
double normalScaling = 1.0/sqrt(dot(normal,normal));
normalizedNormal = normalScaling * normal;
}
//add to normal cloud
pcl::Normal pclNormalizedNormal;
pclNormalizedNormal.normal_x = normalizedNormal[0][0];
pclNormalizedNormal.normal_y = normalizedNormal[1][0];
pclNormalizedNormal.normal_z = normalizedNormal[2][0];
normalsFixed.push_back(pclNormalizedNormal);
}
此代码的结果是:
我在VCG库中找到了一些代码来定位面和顶点法线。 使用它之后,网格的大部分具有正确的面法线,但不是全部。
新代码:
// VCG library implementation
MyMesh m;
// Convert pcl::PolygonMesh to VCG MyMesh
m.Clear();
// Create temporary cloud in to have handy struct object
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZRGBA> ());
pcl::fromROSMsg (meshFixed.cloud,*cloud1);
// Now convert the vertices to VCG MyMesh
int vertCount = cloud1->width*cloud1->height;
vcg::tri::Allocator<MyMesh>::AddVertices(m, vertCount);
for(unsigned int i=0;i<vertCount;++i)
m.vert[i].P()=vcg::Point3f(cloud1->points[i].x,cloud1->points[i].y,cloud1->points[i].z);
// Now convert the polygon indices to VCG MyMesh => make VCG faces..
int triCount = meshFixed.polygons.size();
if(triCount==1)
{
if(meshFixed.polygons[0].vertices[0]==0 && meshFixed.polygons[0].vertices[1]==0 && meshFixed.polygons[0].vertices[2]==0)
triCount=0;
}
Allocator<MyMesh>::AddFaces(m, triCount);
for(unsigned int i=0;i<triCount;++i)
{
m.face[i].V(0)=&m.vert[meshFixed.polygons[i].vertices[0]];
m.face[i].V(1)=&m.vert[meshFixed.polygons[i].vertices[1]];
m.face[i].V(2)=&m.vert[meshFixed.polygons[i].vertices[2]];
}
vcg::tri::UpdateBounding<MyMesh>::Box(m);
vcg::tri::UpdateNormal<MyMesh>::PerFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalizedPerFace(m);
printf("Input mesh vn:%i fn:%i\n",m.VN(),m.FN());
// Start to flip all normals to outside
vcg::face::FFAdj<MyMesh>::FFAdj();
vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
bool oriented, orientable;
if ( vcg::tri::Clean<MyMesh>::CountNonManifoldEdgeFF(m)>0 ) {
std::cout << "Mesh has some not 2-manifold faces, Orientability requires manifoldness" << std::endl; // text
return; // can't continue, mesh can't be processed
}
vcg::tri::Clean<MyMesh>::OrientCoherentlyMesh(m, oriented,orientable);
vcg::tri::Clean<MyMesh>::FlipNormalOutside(m);
vcg::tri::Clean<MyMesh>::FlipMesh(m);
//vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
//vcg::tri::UpdateTopology<MyMesh>::TestFaceFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalizedPerFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexFromCurrentFaceNormal(m);
// now convert VCG back to pcl::PolygonMesh
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>);
cloud->is_dense = false;
cloud->width = vertCount;
cloud->height = 1;
cloud->points.resize (vertCount);
// Now fill the pointcloud of the mesh
for(int i=0; i<vertCount; i++)
{
cloud->points[i].x = m.vert[i].P()[0];
cloud->points[i].y = m.vert[i].P()[1];
cloud->points[i].z = m.vert[i].P()[2];
}
pcl::toROSMsg(*cloud,meshFixed.cloud);
std::vector<pcl::Vertices> polygons;
// Now fill the indices of the triangles/faces of the mesh
for(int i=0; i<triCount; i++)
{
pcl::Vertices vertices;
vertices.vertices.push_back(m.face[i].V(0)-&*m.vert.begin());
vertices.vertices.push_back(m.face[i].V(1)-&*m.vert.begin());
vertices.vertices.push_back(m.face[i].V(2)-&*m.vert.begin());
polygons.push_back(vertices);
}
meshFixed.polygons = polygons;
导致:(Meshlab仍显示正常面向两侧)
答案 0 :(得分:6)
我终于解决了这个问题。所以我还在使用VCG库。从上面的新代码中我稍微更新了以下部分:
vcg::tri::Clean<MyMesh>::OrientCoherentlyMesh(m, oriented,orientable);
//vcg::tri::Clean<MyMesh>::FlipNormalOutside(m);
//vcg::tri::Clean<MyMesh>::FlipMesh(m);
//vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
//vcg::tri::UpdateTopology<MyMesh>::TestFaceFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalizedPerFace(m);
vcg::tri::UpdateNormal<MyMesh>::PerVertexFromCurrentFaceNormal(m);
现在我已更新vcg::tri::Clean<MyMesh>::OrientCoherentlyMesh()
中的clean.h
功能。这里的更新是正确定位组的第一个多边形。此外,在交换边缘后,计算并更新面部的法线。
static void OrientCoherentlyMesh(MeshType &m, bool &Oriented, bool &Orientable)
{
RequireFFAdjacency(m);
assert(&Oriented != &Orientable);
assert(m.face.back().FFp(0)); // This algorithms require FF topology initialized
Orientable = true;
Oriented = true;
tri::UpdateSelection<MeshType>::FaceClear(m);
std::stack<FacePointer> faces;
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if (!fi->IsD() && !fi->IsS())
{
// each face put in the stack is selected (and oriented)
fi->SetS();
// New section of code to orient the initial face correctly
if(fi->N()[2]>0.0)
{
face::SwapEdge<FaceType,true>(*fi, 0);
face::ComputeNormal(*fi);
}
// End of new code section.
faces.push(&(*fi));
// empty the stack
while (!faces.empty())
{
FacePointer fp = faces.top();
faces.pop();
// make consistently oriented the adjacent faces
for (int j = 0; j < 3; j++)
{
//get one of the adjacent face
FacePointer fpaux = fp->FFp(j);
int iaux = fp->FFi(j);
if (!fpaux->IsD() && fpaux != fp && face::IsManifold<FaceType>(*fp, j))
{
if (!CheckOrientation(*fpaux, iaux))
{
Oriented = false;
if (!fpaux->IsS())
{
face::SwapEdge<FaceType,true>(*fpaux, iaux);
// New line to update face normal
face::ComputeNormal(*fpaux);
// end of new section.
assert(CheckOrientation(*fpaux, iaux));
}
else
{
Orientable = false;
break;
}
}
// put the oriented face into the stack
if (!fpaux->IsS())
{
fpaux->SetS();
faces.push(fpaux);
}
}
}
}
}
if (!Orientable) break;
}
}
此外,我还更新了函数bool CheckOrientation(FaceType &f, int z)
以执行基于正常z方向的计算。
template <class FaceType>
bool CheckOrientation(FaceType &f, int z)
{
// Added next section to calculate the difference between normal z-directions
FaceType *original = f.FFp(z);
double nf2,ng2;
nf2=f.N()[2];
ng2=original->N()[2];
// End of additional section
if (IsBorder(f, z))
return true;
else
{
FaceType *g = f.FFp(z);
int gi = f.FFi(z);
// changed if statement from: if (f.V0(z) == g->V1(gi))
if (nf2/abs(nf2)==ng2/abs(ng2))
return true;
else
return false;
}
}
结果是我对算法的期望和期望: