我试图在cuda内核中生成随机数随机数。我希望从均匀分布和整数形式生成随机数,从1到8开始。随机数对于每个线程都是不同的。可以生成随机数的范围也可以从一个线程到另一个线程而变化。一个线程中的最大范围可能低至2,或者在另一个线程中,它可以高达8,但不高于该高。所以,我在下面提供了一个如何生成数字的例子:
In thread#1 --> maximum of the range is 2 and so the random number should be between 1 and 2
In thread#2 --> maximum of the range is 6 and so the random number should be between 1 and 6
In thread#3 --> maximum of the range is 5 and so the random number should be between 1 and 5
依旧......
答案 0 :(得分:14)
编辑:我已经编辑了我的答案,以解决其他答案(@tudorturcu)和评论中指出的一些不足之处。
您的设备代码中包含以下内容:
int idx = threadIdx.x+blockDim.x*blockIdx.x;
// assume have already set up curand and generated state for each thread...
// assume ranges vary by thread index
float myrandf = curand_uniform(&(my_curandstate[idx]));
myrandf *= (max_rand_int[idx] - min_rand_int[idx] + 0.999999);
myrandf += min_rand_int[idx];
int myrand = (int)truncf(myrandf);
你应该:
#include <math.h>
代表truncf
这是一个完全有效的例子:
$ cat t527.cu
#include <stdio.h>
#include <curand.h>
#include <curand_kernel.h>
#include <math.h>
#include <assert.h>
#define MIN 2
#define MAX 7
#define ITER 10000000
__global__ void setup_kernel(curandState *state){
int idx = threadIdx.x+blockDim.x*blockIdx.x;
curand_init(1234, idx, 0, &state[idx]);
}
__global__ void generate_kernel(curandState *my_curandstate, const unsigned int n, const unsigned *max_rand_int, const unsigned *min_rand_int, unsigned int *result){
int idx = threadIdx.x + blockDim.x*blockIdx.x;
int count = 0;
while (count < n){
float myrandf = curand_uniform(my_curandstate+idx);
myrandf *= (max_rand_int[idx] - min_rand_int[idx]+0.999999);
myrandf += min_rand_int[idx];
int myrand = (int)truncf(myrandf);
assert(myrand <= max_rand_int[idx]);
assert(myrand >= min_rand_int[idx]);
result[myrand-min_rand_int[idx]]++;
count++;}
}
int main(){
curandState *d_state;
cudaMalloc(&d_state, sizeof(curandState));
unsigned *d_result, *h_result;
unsigned *d_max_rand_int, *h_max_rand_int, *d_min_rand_int, *h_min_rand_int;
cudaMalloc(&d_result, (MAX-MIN+1) * sizeof(unsigned));
h_result = (unsigned *)malloc((MAX-MIN+1)*sizeof(unsigned));
cudaMalloc(&d_max_rand_int, sizeof(unsigned));
h_max_rand_int = (unsigned *)malloc(sizeof(unsigned));
cudaMalloc(&d_min_rand_int, sizeof(unsigned));
h_min_rand_int = (unsigned *)malloc(sizeof(unsigned));
cudaMemset(d_result, 0, (MAX-MIN+1)*sizeof(unsigned));
setup_kernel<<<1,1>>>(d_state);
*h_max_rand_int = MAX;
*h_min_rand_int = MIN;
cudaMemcpy(d_max_rand_int, h_max_rand_int, sizeof(unsigned), cudaMemcpyHostToDevice);
cudaMemcpy(d_min_rand_int, h_min_rand_int, sizeof(unsigned), cudaMemcpyHostToDevice);
generate_kernel<<<1,1>>>(d_state, ITER, d_max_rand_int, d_min_rand_int, d_result);
cudaMemcpy(h_result, d_result, (MAX-MIN+1) * sizeof(unsigned), cudaMemcpyDeviceToHost);
printf("Bin: Count: \n");
for (int i = MIN; i <= MAX; i++)
printf("%d %d\n", i, h_result[i-MIN]);
return 0;
}
$ nvcc -arch=sm_20 -o t527 t527.cu -lcurand
$ cuda-memcheck ./t527
========= CUDA-MEMCHECK
Bin: Count:
2 1665496
3 1668130
4 1667644
5 1667435
6 1665026
7 1666269
========= ERROR SUMMARY: 0 errors
$
答案 1 :(得分:3)
@ Robert的示例不生成完美均匀分布(尽管生成了范围内的所有数字,并且所有生成的数字都在该范围内)。最小值和最大值都有0.5的概率被选择范围内的其余数字。
在步骤2中,您应该乘以范围中的值的数量:(最大值 - 最小值 + 0.999999 )。 *
在步骤3,偏移量应为(+最小值)而不是(+最小值+ 0.5)。
步骤1和4保持不变。
*正如@Kamil Czerski所说,1.0包含在发行版中。添加1.0而不是0.99999有时会导致数字超出所需范围。