在Cuda内核中生成变化范围内的随机数

时间:2013-08-29 01:49:57

标签: c cuda gpgpu

我试图在cuda内核中生成随机数随机数。我希望从均匀分布和整数形式生成随机数,从1到8开始。随机数对于每个线程都是不同的。可以生成随机数的范围也可以从一个线程到另一个线程而变化。一个线程中的最大范围可能低至2,或者在另一个线程中,它可以高达8,但不高于该高。所以,我在下面提供了一个如何生成数字的例子:

In thread#1 --> maximum of the range is 2 and so the random number should be between 1 and 2
In thread#2 --> maximum of the range is 6  and so the random number should be between 1 and 6
In thread#3 --> maximum of the range is 5 and so the random number should be between 1 and 5

依旧......

2 个答案:

答案 0 :(得分:14)

编辑:我已经编辑了我的答案,以解决其他答案(@tudorturcu)和评论中指出的一些不足之处。

  1. 使用CURAND生成uniform distribution 介于0.0和1.0之间
  2. 然后将其乘以所需范围(最大值 - 最小值) 值+ 0.999999)。
  3. 然后添加偏移量(+最小值)。
  4. 然后截断为整数。
  5. 您的设备代码中包含以下内容:

    int idx = threadIdx.x+blockDim.x*blockIdx.x;
    // assume have already set up curand and generated state for each thread...
    // assume ranges vary by thread index
    float myrandf = curand_uniform(&(my_curandstate[idx]));
    myrandf *= (max_rand_int[idx] - min_rand_int[idx] + 0.999999);
    myrandf += min_rand_int[idx];
    int myrand = (int)truncf(myrandf);
    

    你应该:

    #include <math.h>
    

    代表truncf

    这是一个完全有效的例子:

    $ cat t527.cu
    #include <stdio.h>
    #include <curand.h>
    #include <curand_kernel.h>
    #include <math.h>
    #include <assert.h>
    #define MIN 2
    #define MAX 7
    #define ITER 10000000
    
    __global__ void setup_kernel(curandState *state){
    
      int idx = threadIdx.x+blockDim.x*blockIdx.x;
      curand_init(1234, idx, 0, &state[idx]);
    }
    
    __global__ void generate_kernel(curandState *my_curandstate, const unsigned int n, const unsigned *max_rand_int, const unsigned *min_rand_int,  unsigned int *result){
    
      int idx = threadIdx.x + blockDim.x*blockIdx.x;
    
      int count = 0;
      while (count < n){
        float myrandf = curand_uniform(my_curandstate+idx);
        myrandf *= (max_rand_int[idx] - min_rand_int[idx]+0.999999);
        myrandf += min_rand_int[idx];
        int myrand = (int)truncf(myrandf);
    
        assert(myrand <= max_rand_int[idx]);
        assert(myrand >= min_rand_int[idx]);
        result[myrand-min_rand_int[idx]]++;
        count++;}
    }
    
    int main(){
    
      curandState *d_state;
      cudaMalloc(&d_state, sizeof(curandState));
      unsigned *d_result, *h_result;
      unsigned *d_max_rand_int, *h_max_rand_int, *d_min_rand_int, *h_min_rand_int;
      cudaMalloc(&d_result, (MAX-MIN+1) * sizeof(unsigned));
      h_result = (unsigned *)malloc((MAX-MIN+1)*sizeof(unsigned));
      cudaMalloc(&d_max_rand_int, sizeof(unsigned));
      h_max_rand_int = (unsigned *)malloc(sizeof(unsigned));
      cudaMalloc(&d_min_rand_int, sizeof(unsigned));
      h_min_rand_int = (unsigned *)malloc(sizeof(unsigned));
      cudaMemset(d_result, 0, (MAX-MIN+1)*sizeof(unsigned));
      setup_kernel<<<1,1>>>(d_state);
    
      *h_max_rand_int = MAX;
      *h_min_rand_int = MIN;
      cudaMemcpy(d_max_rand_int, h_max_rand_int, sizeof(unsigned), cudaMemcpyHostToDevice);
      cudaMemcpy(d_min_rand_int, h_min_rand_int, sizeof(unsigned), cudaMemcpyHostToDevice);
      generate_kernel<<<1,1>>>(d_state, ITER, d_max_rand_int, d_min_rand_int, d_result);
      cudaMemcpy(h_result, d_result, (MAX-MIN+1) * sizeof(unsigned), cudaMemcpyDeviceToHost);
      printf("Bin:    Count: \n");
      for (int i = MIN; i <= MAX; i++)
        printf("%d    %d\n", i, h_result[i-MIN]);
    
      return 0;
    }
    
    
    $ nvcc -arch=sm_20 -o t527 t527.cu -lcurand
    $ cuda-memcheck ./t527
    ========= CUDA-MEMCHECK
    Bin:    Count:
    2    1665496
    3    1668130
    4    1667644
    5    1667435
    6    1665026
    7    1666269
    ========= ERROR SUMMARY: 0 errors
    $
    

答案 1 :(得分:3)

@ Robert的示例不生成完美均匀分布(尽管生成了范围内的所有数字,并且所有生成的数字都在该范围内)。最小值和最大值都有0.5的概率被选择范围内的其余数字。

在步骤2中,您应该乘以范围中的值的数量:(最大值 - 最小值 + 0.999999 )。 *

在步骤3,偏移量应为(+最小值)而不是(+最小值+ 0.5)。

步骤1和4保持不变。

*正如@Kamil Czerski所说,1.0包含在发行版中。添加1.0而不是0.99999有时会导致数字超出所需范围。