我有一个包含多列的pandas数据框。我想根据行中的值和另一列向量数据框weighted_sum
weight
weighted_sum
应具有以下值:
row[weighted_sum] = row[col0]*weight[0] + row[col1]*weight[1] + row[col2]*weight[2] + ...
我找到了函数sum(axis=1)
,但它不会让我与weight
相乘。
编辑: 我改变了一些东西。
weight
看起来像这样:
0
col1 0.5
col2 0.3
col3 0.2
df
看起来像这样:
col1 col2 col3
1.0 2.2 3.5
6.1 0.4 1.2
df*weight
会返回一个满Nan
个值的数据框。
答案 0 :(得分:10)
问题在于,您将帧与具有不同行索引的不同大小的帧相乘。这是解决方案:
In [121]: df = DataFrame([[1,2.2,3.5],[6.1,0.4,1.2]], columns=list('abc'))
In [122]: weight = DataFrame(Series([0.5, 0.3, 0.2], index=list('abc'), name=0))
In [123]: df
Out[123]:
a b c
0 1.00 2.20 3.50
1 6.10 0.40 1.20
In [124]: weight
Out[124]:
0
a 0.50
b 0.30
c 0.20
In [125]: df * weight
Out[125]:
0 a b c
0 nan nan nan nan
1 nan nan nan nan
a nan nan nan nan
b nan nan nan nan
c nan nan nan nan
您可以访问该列:
In [126]: df * weight[0]
Out[126]:
a b c
0 0.50 0.66 0.70
1 3.05 0.12 0.24
In [128]: (df * weight[0]).sum(1)
Out[128]:
0 1.86
1 3.41
dtype: float64
或使用dot
取回另一个DataFrame
In [127]: df.dot(weight)
Out[127]:
0
0 1.86
1 3.41
将所有这些结合起来:
In [130]: df['weighted_sum'] = df.dot(weight)
In [131]: df
Out[131]:
a b c weighted_sum
0 1.00 2.20 3.50 1.86
1 6.10 0.40 1.20 3.41
以下是每种方法的timeit
,使用较大的DataFrame
。
In [145]: df = DataFrame(randn(10000000, 3), columns=list('abc'))
weight
In [146]: weight = DataFrame(Series([0.5, 0.3, 0.2], index=list('abc'), name=0))
In [147]: timeit df.dot(weight)
10 loops, best of 3: 57.5 ms per loop
In [148]: timeit (df * weight[0]).sum(1)
10 loops, best of 3: 125 ms per loop
广泛DataFrame
:
In [162]: df = DataFrame(randn(10000, 1000))
In [163]: weight = DataFrame(randn(1000, 1))
In [164]: timeit df.dot(weight)
100 loops, best of 3: 5.14 ms per loop
In [165]: timeit (df * weight[0]).sum(1)
10 loops, best of 3: 41.8 ms per loop
因此,dot
更快,更易读。
注意:如果您的任何数据包含NaN
,那么您不应该使用dot
,您应该使用乘法和求和方法。 dot
无法处理NaN
,因为它只是numpy.dot()
周围的薄包装(不处理NaN
)。
答案 1 :(得分:8)
假设权重是每列的一系列权重,您可以乘以并得到总和:
In [11]: df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['a', 'b', 'c'])
In [12]: weights = pd.Series([7, 8, 9], index=['a', 'b', 'c'])
In [13]: (df * weights)
Out[13]:
a b c
0 7 16 27
1 28 40 54
In [14]: (df * weights).sum(1)
Out[14]:
0 50
1 122
dtype: int64
这种方法的好处是它可以处理您不想权衡的列:
In [21]: weights = pd.Series([7, 8], index=['a', 'b'])
In [22]: (df * weights)
Out[22]:
a b c
0 7 16 NaN
1 28 40 NaN
In [23]: (df * weights).sum(1)
Out[23]:
0 23
1 68
dtype: float64