使用复合键的Hadoop难度

时间:2013-08-22 13:21:36

标签: hadoop mapreduce

我使用Hadoop分析GSOD数据(ftp://ftp.ncdc.noaa.gov/pub/data/gsod/)。 我选择了5年时间来完成我的实验(2005年 - 2009年)。 我已经配置了一个小集群并执行了一个简单的MapReduce程序,该程序可以获得一年内注册的最高温度。

现在我必须创建一个新的MR程序,计算每个站点所有这些年出现的所有现象。

我必须分析的文件具有以下结构:

STN--- ...  FRSHTO
722115      110001
722115      011001
722110      111000
722110      001000
722000      001000

列STN表示站代码,FRSHTT表示现象: F - 雾,R - 雨或细雨,S - 雪或冰粒,H - 冰雹,T - 雷霆,O - 龙卷风或漏斗云。

值1表示当天发生这种现象; 0,意思是没有发生。

我需要找到如下结果:

722115: F = 1, R = 2, S = 1, O = 2
722110: F = 1, R = 1, S = 2
722000: S = 1

我可以运行MR程序,但结果是错误的,给我这些结果:

722115 F, 1
722115 R, 1
722115 R, 1
722115 S, 1
722115 O, 1
722115 O, 1
722110 F, 1
722110 R, 1
722110 S, 1
722110 S, 1
722000 S, 1

我使用过这些代码:

Mapper.java

public class Mapper extends org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, StationPhenomenun, IntWritable> {
@Override
protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException {
    String line = value.toString();
    // Every file starts with a field description line, so, I ignore this line
    if (!line.startsWith("STN---")) {
        // First field of the line means the station code where data was collected
        String station = line.substring(0, 6);
        String fog = (line.substring(132, 133));
        String rainOrDrizzle = (line.substring(133, 134));
        String snowOrIcePellets = (line.substring(134, 135));
        String hail = (line.substring(135, 136));
        String thunder = (line.substring(136, 137));
        String tornadoOrFunnelCloud = (line.substring(137, 138));

        if (fog.equals("1"))
            context.write(new StationPhenomenun(station,"F"), new IntWritable(1));
        if (rainOrDrizzle.equals("1"))
            context.write(new StationPhenomenun(station,"R"), new IntWritable(1));
        if (snowOrIcePellets.equals("1"))
            context.write(new StationPhenomenun(station,"S"), new IntWritable(1));
        if (hail.equals("1"))
            context.write(new StationPhenomenun(station,"H"), new IntWritable(1));
        if (thunder.equals("1"))
            context.write(new StationPhenomenun(station,"T"), new IntWritable(1));
        if (tornadoOrFunnelCloud.equals("1"))
            context.write(new StationPhenomenun(station,"O"), new IntWritable(1));
    }
}
}

Reducer.java

public class Reducer extends org.apache.hadoop.mapreduce.Reducer<StationPhenomenun, IntWritable, StationPhenomenun, IntWritable> {

protected void reduce(StationPhenomenun key, Iterable<IntWritable> values, org.apache.hadoop.mapreduce.Reducer.Context context) throws IOException, InterruptedException {
int count = 0;        
    for (IntWritable value : values) {
        count++;
    }

    String station = key.getStation().toString();
    String occurence = key.getPhenomenun().toString();

    StationPhenomenun textPair = new StationPhenomenun(station, occurence);
    context.write(textPair, new IntWritable(count));
}
}

StationPhenomenum.java

public class StationPhenomenun implements WritableComparable<StationPhenomenun> {
private String station;
private String phenomenun;
public StationPhenomenun(String station, String phenomenun) {
    this.station = station;
    this.phenomenun = phenomenun;
}
public StationPhenomenun() {
}
public String getStation() {
    return station;
}
public String getPhenomenun() {
    return phenomenun;
}
@Override
public void readFields(DataInput in) throws IOException {
    station = in.readUTF();
    phenomenun = in.readUTF();
}
@Override
public void write(DataOutput out) throws IOException {
    out.writeUTF(station);
    out.writeUTF(phenomenun);
}
@Override
public int compareTo(StationPhenomenun t) {
    int cmp = this.station.compareTo(t.station);
    if (cmp != 0) {
        return cmp;
    }
    return this.phenomenun.compareTo(t.phenomenun);
}    
@Override
public boolean equals(Object obj) {
    if (obj == null) {
        return false;
    }
    if (getClass() != obj.getClass()) {
        return false;
    }
    final StationPhenomenun other = (StationPhenomenun) obj;
    if (this.station != other.station && (this.station == null || !this.station.equals(other.station))) {
        return false;
    }
    if (this.phenomenun != other.phenomenun && (this.phenomenun == null || !this.phenomenun.equals(other.phenomenun))) {
        return false;
    }
    return true;
}
@Override
public int hashCode() {
    return this.station.hashCode() * 163 + this.phenomenun.hashCode();
}
}

NcdcJob.java

public class NcdcJob {
public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = new Job(conf);
    job.setJarByClass(NcdcJob.class);
    FileInputFormat.addInputPath(job, new Path("/user/hadoop/input"));
    FileOutputFormat.setOutputPath(job, new Path("/user/hadoop/station"));
    job.setMapperClass(Mapper.class);
    job.setReducerClass(Reducer.class);
    job.setMapOutputKeyClass(StationPhenomenun.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setOutputKeyClass(StationPhenomenun.class);
    job.setOutputValueClass(IntWritable.class);
    System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

有没有人做过类似的事情?

PS:我尝试过这个解决方案(Hadoop - composite key),但对我没用。

1 个答案:

答案 0 :(得分:1)

只需检查以下两个类是否与您的自定义实现匹配。

 job.setMapperClass(Mapper.class);
 job.setReducerClass(Reducer.class);

我能够通过以下更改获得所需的结果

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

protected void reduce(StationPhenomenun key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

还将班级名称更改为MyMapperMyReducer

722115,1,1,0,0,0,1
722115,0,1,1,0,0,1
722110,1,1,1,0,0,0
722110,0,0,1,0,0,0
722000,0,0,1,0,0,0

对于这个输入集,我可以得到以下结果

StationPhenomenun [station=722000, phenomenun=S]    1
StationPhenomenun [station=722110, phenomenun=F]    1
StationPhenomenun [station=722110, phenomenun=R]    1
StationPhenomenun [station=722110, phenomenun=S]    2
StationPhenomenun [station=722115, phenomenun=F]    1
StationPhenomenun [station=722115, phenomenun=O]    2
StationPhenomenun [station=722115, phenomenun=R]    2
StationPhenomenun [station=722115, phenomenun=S]    1

计算相同,您只需自定义输出的显示方式。