Stack:使用Ambari 2.1安装HDP-2.3.2.0-2950
源数据库架构在sql server上,它包含几个主键为:
的表根据Sqoop文档:
Sqoop cannot currently split on multi-column indices. If your table has no index column, or has a multi-column key, then you must also manually choose a splitting column.
第一个问题是:'手动选择拆分列' - 我怎么能牺牲pk而只使用一列或者我错过了一些概念?
SQL Server表是(仅两列,它们形成复合主键):
ChassiNo varchar(8) Unchecked
ECU_Name nvarchar(15) Unchecked
我继续导入,源表有7909097条记录:
sqoop import --connect 'jdbc:sqlserver://somedbserver;database=somedb' --username someusname --password somepass --as-textfile --fields-terminated-by '|&|' --table ChassiECU --num-mappers 8 --warehouse-dir /dataload/tohdfs/reio/odpdw/may2016 --verbose
令人担忧的警告和错误的映射器输入和记录:
16/05/13 10:59:04 WARN manager.CatalogQueryManager: The table ChassiECU contains a multi-column primary key. Sqoop will default to the column ChassiNo only for this job.
16/05/13 10:59:08 WARN db.TextSplitter: Generating splits for a textual index column.
16/05/13 10:59:08 WARN db.TextSplitter: If your database sorts in a case-insensitive order, this may result in a partial import or duplicate records.
16/05/13 10:59:08 WARN db.TextSplitter: You are strongly encouraged to choose an integral split column.
16/05/13 10:59:38 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=1168400
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=1128
HDFS: Number of bytes written=209961941
HDFS: Number of read operations=32
HDFS: Number of large read operations=0
HDFS: Number of write operations=16
Job Counters
Launched map tasks=8
Other local map tasks=8
Total time spent by all maps in occupied slots (ms)=62785
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=62785
Total vcore-seconds taken by all map tasks=62785
Total megabyte-seconds taken by all map tasks=128583680
Map-Reduce Framework
Map input records=15818167
Map output records=15818167
Input split bytes=1128
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=780
CPU time spent (ms)=45280
Physical memory (bytes) snapshot=2219433984
Virtual memory (bytes) snapshot=20014182400
Total committed heap usage (bytes)=9394716672
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=209961941
16/05/13 10:59:38 INFO mapreduce.ImportJobBase: Transferred 200.2353 MB in 32.6994 seconds (6.1235 MB/sec)
16/05/13 10:59:38 INFO mapreduce.ImportJobBase: Retrieved 15818167 records.
创建表:
CREATE EXTERNAL TABLE IF NOT EXISTS ChassiECU(`ChassiNo` varchar(8),
`ECU_Name` varchar(15)) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' LOCATION '/dataload/tohdfs/reio/odpdw/may2016/ChassiECU';
可怕的结果(没有错误) - PROBLEM:15818167 vs 7909097(sql server)记录:
> select count(1) from ChassiECU;
Query ID = hive_20160513110313_8e294d83-78aa-4e52-b90f-b5640268b8ac
Total jobs = 1
Launching Job 1 out of 1
Tez session was closed. Reopening...
Session re-established.
Status: Running (Executing on YARN cluster with App id application_1446726117927_0059)
--------------------------------------------------------------------------------
VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
--------------------------------------------------------------------------------
Map 1 .......... SUCCEEDED 14 14 0 0 0 0
Reducer 2 ...... SUCCEEDED 1 1 0 0 0 0
--------------------------------------------------------------------------------
VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 6.12 s
--------------------------------------------------------------------------------
OK
_c0
15818167
令人惊讶的是,如果复合键由一个int(用于拆分)组成,我得到的准确或不匹配少于10条记录,但我仍然对这些记录感到担忧! < / p>
我该怎么办?
答案 0 :(得分:6)
手动指定拆分列。拆分列不一定等于PK。你可以有复杂的PK和一些int Split列。您可以指定任何整数列甚至简单函数(一些简单的函数,如substring或cast,而不是聚合或分析)。 拆分列最好应该是均匀分布的整数。
例如,如果您的拆分列包含值为-1的10行和10M行,值为10000 - 10000000且num-mappers = 8,那么sqoop将不均匀地拆分映射器之间的数据集:
将导致数据倾斜,第8个映射器将永远运行或 甚至失败了。当使用非整数时,我也有重复 拆分列与MS-SQL 。因此,使用整数拆分列。在你的情况下 只有两个varchar列的表可以
(1)添加代理int PK并将其用作分割或
(2)使用带有WHERE
子句的自定义查询手动拆分数据,并使用num-mappers = 1运行sqoop几次,或
(3)将一些确定性整数非聚合函数应用于varchar列,例如cast(substr(...)as int)或second(timestamp_col)
或{{1}等,作为分裂列。