抱歉这个可怕的头衔。我正在尝试为Applicative
包装Monad
类型的Monoid
实例。
instance (Monad m, Monoid o) => Applicative (m o) where
pure x = return mempty
xm <*> ym = do
x <- xm
y <- ym
return $ x `mappend` y
这不起作用; GCHi抱怨:
Kind mis-match
The first argument of `Applicative' should have kind `* -> *',
but `m o' has kind `*'
In the instance declaration for `Applicative (m o)'
我意识到我上面写的内容可能毫无意义。以下是上下文:我正在尝试使用文档A pattern for almost compositional functions中描述的compos
抽象。拿这棵树(使用GADT版本compos
;我已经简化了很多):
data Tree :: * -> * where
Var :: String -> Expr
Abs :: [String] -> Expr -> Expr
App :: Expr -> [Expr] -> Expr
class Compos t where
compos :: Applicative f => (forall a. t a -> f (t a)) -> t c -> f (t c)
instance Compos Tree where
compos f t =
case t of
Abs ps e -> pure Abs <*> pure ps <*> f e
App e es -> pure App <*> f e <*> traverse f es
_ -> pure t
我将编写许多函数,这些函数会下降树并返回一个说错误列表或一组字符串,同时还需要状态(如绑定环境),例如:
composFoldM :: (Compos t, Monad m, Monoid o) => (forall a. t a -> m o) -> t c -> m o
composFoldM f = ???
checkNames :: (Tree a) -> State (Set Name) [Error]
checkNames e =
case e of
Var n -> do
env <- get
-- check that n is in the current environment
return $ if Set.member n env then [] else [NameError n]
Abs ps e' -> do
env <- get
-- add the abstractions to the current environment
put $ insertManySet ps env
checkNames e'
_ -> composFoldM checkNames e
data Error = NameError Name
insertManySet xs s = Set.union s (Set.fromList xs)
我认为通过composFoldM
对compos
结构(Monad m, Monoid o) => m o
使用Applicative
,可以将这些全部抽象出来。因此,请将其与the paper第575/576页上的compos
版Applicative
版本一起使用。我想我需要建立一个这个结构的{{1}}实例。我该怎么做?还是我完全走错了路?
答案 0 :(得分:5)
您希望Constant
包中的Data.Functor.Constant
适用transformers
,您可以找到here。
此Applicative
具有以下实例:
instance (Monoid a) => Applicative (Constant a) where
pure _ = Constant mempty
Constant x <*> Constant y = Constant (x `mappend` y)
然后,您可以使用Constant
Compose
(也在Data.Functor.Compose
包中)使用transformers
与任何其他申请人撰写Compose
,您可以找到here。
Applicative
有instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure x = Compose (pure (pure x))
Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
个实例:
Compose
然后,您可以Constant
将Applicative
个State
应用与其他任何Monoid
(例如{{1}})同时保留某个状态和正在运行的{{1}}计数器。< / p>
更一般地说,您应该阅读论文The Essence of the Iterator Pattern,其中更详细地讨论了这些模式。