我重写了我的二叉树实现,它已经很接近,但删除子树仍然缺乏完整的功能。
删除没有子节点的树根本不起作用。实际上,当调用方法在树中搜索已删除树的实例时,搜索方法返回true(即使该树和包含在树中的项在删除方法结束时被释放)。即使使用gdb,我也无法解决这个问题。
删除具有一个子节点的树,即使它是根节点也可以。
删除只有两个孩子的树只能部分工作。被移除的树的左树(指针)被设置为指向被移除的树的指针,该指针保存在比移除的树更高的树中。但是,删除的树的权利将丢失。
/*-------------------------------Tree.h---------------------------------*/
#ifndef TREE
#define TREE
#define MAXLEVEL 4
typedef struct cat{
char *name;
int age;
}Item;
/*User Comparison Function*/
typedef int (*comp)(const Item *, const Item *);
typedef struct tree{
int branches;
Item *item;
struct tree *left, *right;
}Tree;
Tree *initializeTree(Tree *);
int isEmpty(Tree *);
int isFull(Tree *);
Tree **searchTree(Tree **, Item *, comp);
int addToTree(Tree **, Item *, comp);
int removeFromTree(Tree **, Item *, comp);
void printTree(Tree *, int);
Tree *copyToTree(Item *);
int returnCount(Tree *);
#endif
/*-------------------------------Tree.c---------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include "Tree.h"
#include <math.h>
Tree *initializeTree(Tree *t){
if((t = malloc(sizeof(Tree))) == NULL)
return NULL;
t->left = t->right = NULL;
t->item = NULL;
t->branches = 0;
return t;
}
int isEmpty(Tree *t){
return (t->branches == 0) ? 1:0;
}
int isFull(Tree *root){
return (root->branches == ((int)pow(2, MAXLEVEL)-1)) ? 1:0;
}
Tree *copyToTree(Item *thing){
Tree *tmp = initializeTree(tmp);
tmp->item = thing;
return tmp;
}
Tree **searchTree(Tree **t, Item *thing, comp f){
int compare;
/*t == NULL || ..*/
if((*t) == NULL || (*t)->item == NULL)
return NULL;
if((compare = f((*t)->item, thing)) == 0)
return t;
else if(compare > 0)
return searchTree((&((*t)->left)), thing, f);
else
return searchTree((&((*t)->right)), thing, f);
}
int returnCount(Tree *t){
if(t == NULL)
return;
t->branches = 1 + returnCount(t->left);
t->branches += returnCount(t->right);
return t->branches;
}
int addToTree(Tree **t, Item *thing, comp f){
if(*t == NULL || (*t)->item == NULL){
*t = copyToTree(thing);
if(*t == NULL)
return 0;
return 1;
}
if(f((*t)->item, thing) >= 0)
return addToTree(&((*t)->left), thing, f);
else
return addToTree(&((*t)->right), thing, f);
}
int removeFromTree(Tree **t, Item *thing, comp f){
Tree **tmp, *tmp2;
if((tmp = searchTree(t, thing, f)) == NULL)
return 0;
tmp2 = *tmp;
if((*tmp)->left == NULL ^ (*tmp)->right == NULL)
((*tmp)->right == NULL) ? (*tmp = (*tmp)->left):(*tmp = (*tmp)->right);
else if((*tmp)->left != NULL && (*tmp)->right != NULL){
(*tmp) = (*tmp)->left;
/*tmp3 = *tmp;*/
while((*tmp)->right != NULL)
(*tmp) = (*tmp)->right;
(*tmp) = tmp2->right;
}
free(tmp2->item);
free(tmp2);
return 1;
}
void printTree(Tree *t, int level){
if(t == NULL || t->item == NULL)
return;
int spaces = 5*(MAXLEVEL - level);
printTree(t->left, level+1);
while(spaces-- > 0)
putchar(' ');
putchar(level + '0');
putchar('\n');
printTree(t->right, level+1);
}
/*-------------------------------Main.c---------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Tree.h"
#define MAXNAME 20
int itemComp(const Item *, const Item *);
int promptUser(void);
Item *createUserItem();
int main(){
Tree *userTree = initializeTree(userTree);
Item *userItem;
int userInput;
do{
userInput = promptUser();
switch(userInput){
case 1:
if((userItem = createUserItem()) && addToTree(&userTree,userItem,itemComp))
puts("Cat successfully added!");
else
puts("Could not add cat!");
break;
case 2:
if(userItem = createUserItem()){
if(removeFromTree(&userTree, userItem, itemComp))
puts("Cat successfully removed!");
}
else
puts("Could not remove cat!");
break;
case 3:
if((userItem =createUserItem()) && searchTree(&userTree,userItem,itemComp))
puts("Cat found!");
else
puts("Cat not found!");
break;
case 4:
if(isEmpty(userTree))
puts("Tree is empty!");
else
puts("Tree is not empty!");
break;
case 5:
if(isFull(userTree))
puts("Tree is full!");
else
puts("Tree is not full!");
break;
case 6:
printTree(userTree, 1);
break;
case 0:
break;
default:
puts("Not an option!");
break;
}
}while(userInput);
return 0;
}
int promptUser(){
puts("----------Options Menu-----------");
puts("1. Add Cat");
puts("2. Remove Cat");
puts("3. Search for cat");
puts("4. Check if Empty");
puts("5. Check if Full");
puts("6. Print Tree");
puts("0. Quit");
int userinput = getchar() - '0';
while(getchar() != '\n')
;
return userinput;
}
Item *createUserItem(){
static char nameBuf[MAXNAME];
puts("Enter cat name: ");
if(fgets(nameBuf, MAXNAME, stdin) == NULL)
return NULL;
Item *tmp = malloc(sizeof(Item));
if((tmp->name = malloc(strlen(nameBuf))) == NULL)
return NULL;
strcpy(tmp->name, nameBuf);
tmp->age = -1;
puts("Enter cat age");
scanf("%d", &tmp->age);
while(getchar() != '\n')
;
return tmp;
}
int itemComp(const Item *thing_one, const Item *thing_two){
int comparison;
if(comparison = strcmp(thing_one->name, thing_two->name)){
printf("The comparison is [%d]\n", comparison);
return comparison;
}
return thing_one->age - thing_two->age;
}
计划是:
如果没有孩子,只需释放树的内存;
如果当前树有一个子节点,则将当前树的指向该子节点的指针设置为指向当前树的指针,因为指向当前树的指针包含在当前树的父节点中。然后释放当前树的内存。
如果当前树有两个子节点,请将当前树的指针设置为左子节点 要成为当前树的指针(由于上述原因),然后遍历左侧 孩子的右指针,直到有空位(空指针)。将当前树的正确子项设置为空缺。
有什么想法吗?
答案 0 :(得分:2)
我不得不从头开始重建你的删除节点功能。不幸的是,我不认为你自己实施它时有正确的想法。从树中删除节点是一项难以实现的功能,尤其是在管理内存时(以避免内存泄漏)。
删除节点时的想法是将其替换为要删除的节点左子树中的最右侧节点。如果左子树为空,则完全删除当前节点并替换为右子树。
这将是这样的(未经测试 - 只是掌握了这个的一般概念):
// Purpose: Finds the largest node in the given Tree. Once found,
// returns the item and destroys the node.
// PRE: t != NULL, *t != NULL
// POST: - returns a pointer to a Item
// - Side Effect: Frees the largest node in the Tree. Caller must
// free the returned Item.
// TIME: O(n), where n is the height of the Tree.
static Item *largestNode( Tree **t ) {
assert( t != NULL );
assert( ( *t ) != NULL );
if ( ( *t )->right == NULL ) {
Item *key = ( *t )->item;
free( *t );
*t = NULL;
return key;
} else {
return largestNode( &( ( *t )->right ) );
}
}
Tree *removeFromTree( Tree **t, Item *key, comp f ) {
// Determines whether we are at an empty node (key is not found).
if ( ( t == NULL ) || ( ( *t ) == NULL ) )
return NULL;
// Defines a temporary Tree pointer, tmp and the result from the
// compare function.
Tree *tmp = *t;
int const result = f( tmp->item, key );
// Determines if the result of comparing the current node and the key
// is less. If so, recurse on the left subtree. If it is more, recurse
// on the right subtree, otherwise we found the node that we want to remove,
// remove it.
if ( result < 0 ) {
tmp->left = removeFromTree( &( tmp->left ), key, f );
} else if ( result > 0 ) {
tmp->right = removeFromTree( &( tmp->right ), key, f );
} else {
// Checks if left subtree exists. If not, delete the entire current node
// and return the right subtree, otherwise the left subtree exists and we
// should find the largest node in the left subtree and replace the current
// node item with the item from the largest node in the left subtree then
// delete the entirety of the largest node in the right subtree.
if ( tmp->left == NULL ) {
Tree *tmp_new = tmp->right;
free( tmp );
// @TODO: add free for item.
return tmp_new;
} else {
Item *backup = tmp->item;
tmp->item = largestNode( &( tmp->left ) );
// @TODO: add free for backup item.
return tmp;
}
}
}