我一直在使用openCV的ColorSegmentationAlgorithm工作。我完成了分割,但现在我正在按照颜色收集图片上的对象。为了做到这一点,我得到了在RLE中压缩的图像的“行”,并且它们是用指针相互引用的。
此时(我认为)一切都很好,因为我在控制台上打印了在RLE中压缩的“群集”的结果,一切似乎都没问题。然后我查看结构列表以创建一个代表对象的新变量(带有bouncin框,质心等)。但是,这里有麻烦,我现在不知道为什么当在“随机情况”中调用指针的内容时它的负载很差(就像变量被移位):例如,如果结构有这样的内容:
(int i,int je,int js,“pointer”* child) - > {1,1,1,0,00AB0231A}
已加载 - > {1,0,00AB0231A,1,1}
如果调用下一个“孩子”,则会引发分段错误(Core dumped)错误
所以......以下是代码的一部分:
struct LineObjRLE {
unsigned int i;
unsigned int js;
unsigned int je;
unsigned int size;
unsigned int color;
struct LineObjRLE *parent;
struct LineObjRLE *child;
};
struct LineObjRLE auxRLE = aRLE[i][j];
vector<struct LineObjRLE> obj;
while (1) {
obj.push_back(auxRLE);
printf("auxRLE: parent: %d -- child: %d\n",
auxRLE.parent, auxRLE.child);
if (auxRLE.child == NULL)
break;
auxRLE = *auxRLE.child;
}
这里我得到了一些结果:(指针显示为 int ,但它们是正确的)
---------------------------------
k: 1
auxRLE: parent: 0 -- child: 55035088
auxRLE: parent: 55036080 -- child: 55505600
auxRLE: parent: 55035088 -- child: 0
---------------------------------
k: 2
auxRLE: parent: 0 -- child: 55035248
auxRLE: parent: 0 -- child: 0
---------------------------------
k: 3
auxRLE: parent: 0 -- child: 55035288
auxRLE: parent: 55036200 -- child: 55505720
auxRLE: parent: 55035288 -- child: 0
---------------------------------
k: 4
auxRLE: parent: 0 -- child: 55035528
auxRLE: parent: 0 -- child: 55505840
auxRLE: parent: 55035528 -- child: 0
---------------------------------
k: 5
auxRLE: parent: 0 -- child: 55035688
auxRLE: parent: 0 -- child: 0
---------------------------------
k: 6
auxRLE: parent: 0 -- child: 55035808
auxRLE: parent: 18 -- child: 6
Segmentation fault (core dumped)
当我之前描述的“转变”发生时,分段发生。当我检查结构的所有内容时,我看到指针在结构的其他变量和指针中有其他值的指针(所以指向6或18生成错误)。
PD:我只使用“子”方向来查看结构,而不是同时保存“父母”指针。
我希望我解释了自己,有人可以帮助我。 提前谢谢!
CODE:
while (waitKey(1)) {
t1 = clock(); // Time counter1
device >> frame; // Get the frame from the camera
imshow("Ori", frame); // Show the original frame
//medianBlur(frame, frame, 5);
imageBGR2HSV(&frame); // Transform image from BGR to HSV
int n = frame.channels(); // Count the number of image's channels to use the pointer
int color;
short int js, colorRLE = -1, jRLE = -1; // Variables for RLE encode
for (int i = 0; i < frame.rows; i++) {
uchar* ptr = frame.ptr<uchar>(i); // Pointer to i row
vector<struct LineObjRLE> temp;
for (int j = 0; j < frame.cols; j++) {
// Proximate the color to a cluster
color = CS.whichColorHSV(
(color3cInt ) { ptr[n * j], ptr[n * j + 1], ptr[n
* j + 2] });
// RLE encoding
if (!j) {
colorRLE = color;
jRLE = 1;
js = 0;
} else {
if (j == frame.cols - 1) {
temp.push_back((LineObjRLE ) { i, js, j, j - js, color,
NULL, NULL });
} else if (color == colorRLE) {
jRLE = jRLE + 1;
} else if (color != colorRLE) {
temp.push_back((LineObjRLE ) { i, js, j, j - js, color,
NULL, NULL });
colorRLE = color;
jRLE = 1;
js = j;
}
}
// Change the color (Improve assigning directly the BGR color, save from using imageHSV2BGR)
if (color != -1) {
ptr[n * j] = CS.ColorCluster[color].a;
ptr[n * j + 1] = CS.ColorCluster[color].b;
ptr[n * j + 2] = CS.ColorCluster[color].c;
} else {
ptr[n * j] = CS.ColorCluster[0].a;
ptr[n * j + 1] = CS.ColorCluster[0].b;
ptr[n * j + 2] = CS.ColorCluster[0].c;
}
}
aRLE.push_back(temp);
if (i) { // Except the first line that can't be child of any object (only parent) start joining objects grouped in LineObjRLE variables
unsigned int j = 0, jp = 0; // Pointer to current and previous LineObjRLE
unsigned int pp = aRLE[i - 1][jp].size, pc = aRLE[i][j].size; // Pointer to previous and current col
bool end = false; // Flag to manage the loop
while (!end) {
if ((aRLE[i - 1][jp].je > aRLE[i][j].js
&& aRLE[i - 1][jp].js < aRLE[i][j].je)
&& aRLE[i - 1][jp].color == aRLE[i][j].color) {
aRLE[i][j].parent = &(aRLE[i - 1][jp]);
aRLE[i - 1][jp].child = &(aRLE[i][j]);
//printf("Parent is %d and says that child is: %d\n", &aRLE[i - 1][jp], aRLE[i - 1][jp].child);
//printf("Child is %d and says that parent is: %d\n", &aRLE[i][j], aRLE[i][j].parent);
}
if (j == aRLE[i].size() - 1 || jp == aRLE[i - 1].size() - 1)
end = true;
if (pp > pc) {
pc += aRLE[i][j].size;
j++;
} else {
pp += aRLE[i - 1][jp].size;
jp++;
}
}
}
}
// Run vertically to identifies the parents of the objects
int k = 0; //Index for final object
for (unsigned int i = 0; i < aRLE.size(); i++) {
for (unsigned int j = 0; j < aRLE.at(i).size(); j++) {
if (aRLE[i][j].parent == NULL && aRLE[i][j].child != NULL) {
printf("---------------------------------\n");
printf("k: %d \n", k);
printf("aRLE: parent: %d -- child: %d\n",
aRLE[i][j].parent, aRLE[i][j].child);
// Grow from the seed
struct LineObjRLE auxRLE = aRLE[i][j];
vector<struct LineObjRLE> obj;
while (1) {
obj.push_back(auxRLE);
printf("auxRLE: parent: %d -- child: %d\n",
auxRLE.parent, auxRLE.child);
if (auxRLE.child == NULL)
break;
auxRLE = *auxRLE.child;
}
k = k + 1;
}
}
}
// Calculate increment of time
t2 = clock();
float dif = (((float) t2 - (float) t1) / 1000000.0F) * 1000;
printf("FINISHED IN %f \n", dif);
imageHSV2BGR(&frame);
imshow("Viewer", frame); // Show the image segmented
aRLE.clear();
objs.clear();
}
return 0;
}
答案 0 :(得分:1)
查看代码,您似乎正在存储指向std::vector<RLE>
内对象的指针。例如,我发现:
aRLE[i][j].parent = &(aRLE[i - 1][jp]);
与此同时,我没有看到对aRLE.reserve()
的任何调用,这将确保在添加新对象时不会重定位对象。我怀疑,向量需要重新分配内存,释放已经指向内存,并且你得到了一堆陈旧的指针。
如果你创建陈旧的指针,最简单的方法来测试理论是:
std::vector<T>::reserve(size_type n)
告诉数据结构分配足够的空间来容纳n
个元素。std::vector<RLE>
替换std::deque<RLE>
:尽管添加了对象在任何一端都可以改变迭代器,它不会改变对象的位置。