答案:我的伪在递归方面是模糊的,但是这个视频和下面的资源一样有用
http://www.youtube.com/watch?v=p-gpaIGRCQI
无法掌握这个关于数独谜题的回溯递归算法的实现。
我正在尝试使用递归回溯来解决数独难题。鉴于我正在研究的问题领域,我仍然无法将通用算法包装在我脑海中。
我试图使用的回溯算法似乎是标准的,但我无法遵循逻辑并知道下面发生了什么。
包括回溯算法及其定义。
编辑:“再次,取出类定义,离开声明并放置伪代码”
这是我的伪代码利用它。
伪代码(C ++工具) 回溯游戏(81,9)//代表游戏输入和值的所有可能组合
//All info is loading into a vector of size 81 with the initial state
//puzzle = the initial state 9x9 grid from left to right of integers
vector <int> puzzle
while(!not solved && not the end of the vector){
for(int i =puzzle.begin::iterator i , puzzle.end()) //from 0-80 of the vector until end
if puzzle[i] != 0
//leave alone, original state of board
else
if (valid move) //a guess is allowed in this column/row/square of the board
solution[i] = puzzle_guess[i] //guess a move and insert
else // one of previous guesses were wrong
game.prune(i); //backtracks, or reverses guesses until valid move
}
//游戏的初始状态
4 0 0 6 0 5 2 0 3
0 0 0 0 4 9 0 7 5
0 0 0 1 0 7 6 0 0
6 0 1 0 0 0 4 8 7
0 8 0 0 0 0 0 3 0
2 7 4 0 0 0 5 0 6
0 0 8 7 0 3 0 0 0
3 1 0 9 6 0 0 0 0
7 0 9 2 0 8 0 0 1
谢谢
要知道的唯一线索是使用回溯游戏(81,9)的声明//表示81个可能的数字,9个表示9个不同的选项。
#ifndef BACKTRACK_H
#define BACKTRACK_H
#include <vector>
#include <algorithm>
class BackTrack {
public:
typedef std::vector<unsigned>::const_iterator const_iterator;
typedef std::vector<unsigned>::const_iterator iterator;
BackTrack (unsigned nVariables, unsigned arity=2);
// Create a backtracking state for a problem with
// nVariables variables, each of which has the same
// number of possible values (arity).
template <class Iterator>
BackTrack (Iterator arityBegin,
Iterator arityEnd);
// Create a backtracking state in which each variable may have
// a different number of possible values. The values are obtained
// as integers stored in positions arityBegin .. arityEnd as per
// the usual conventions for C++ iterators. The number of
// variables in the system are inferred from the number of
// positions in the given range.
unsigned operator[] (unsigned variableNumber) const;
// Returns the current value associated with the indicated
// variable.
unsigned numberOfVariables() const;
// Returns the number of variables in the backtracking system.
unsigned arity (unsigned variableNumber) const;
// Returns the number of potential values that can be assigned
// to the indicated variable.
bool more() const;
// Indicates whether additional candidate solutions exist that
// can be reached by subsequent ++ or prune operaations.
void prune (unsigned level);
// Indicates that the combination of values associated with
// variables 0 .. level-1 (inclusive) has been judged unacceptable
// (regardless of the values that could be given to variables
// level..numberOfVariables()-1. The backtracking state will advance
// to the next solution in which at least one of the values in the
// variables 0..level-1 will have changed.
BackTrack& operator++();
// Indicates that the combination of values associated with
// variables 0 .. nVariables-1 (inclusive) has been judged unacceptable.
// The backtracking state will advance
// to the next solution in which at least one of the values in the
// variables 0..level-1 will have changed.
BackTrack operator++(int);
// Same as other operator++, but returns a copy of the old backtrack state
// Iterator operations for easy access to the currently assigned values
const_iterator begin() const {return values.begin();}
iterator begin() {return values.begin();}
const_iterator end() const {return values.end();}
iterator end() {return values.end();}
private:
bool done;
std::vector<unsigned> arities;
std::vector<unsigned> values;
};
inline
unsigned BackTrack::operator[] (unsigned variableNumber) const
// Returns the current value associated with the indicated
// variable.
{
return values[variableNumber];
}
inline
unsigned BackTrack::numberOfVariables() const
// Returns the number of variables in the backtracking system.
{
return values.size();
}
inline
unsigned BackTrack::arity (unsigned variableNumber) const
// Returns the number of potential values that can be assigned
// to the indicated variable.
{
return arities[variableNumber];
}
inline
bool BackTrack::more() const
// Indicates whether additional candidate solutions exist that
// can be reached by subsequent ++ or prune operaations.
{
return !done;
}
template <class Iterator>
BackTrack::BackTrack (Iterator arityBegin,
Iterator arityEnd):
// Create a backtracking state in which each variable may have
// a different number of possible values. The values are obtained
// as integers stored in positions arityBegin .. arityEnd as per
// the usual conventions for C++ iterators. The number of
// variables in the system are inferred from the number of
// positions in the given range.
arities(arityBegin, arityEnd), done(false)
{
fill_n (back_inserter(values), arities.size(), 0);
}
#endif
答案 0 :(得分:7)
这是一个简单的伪代码,可以帮助您理解递归和回溯:
solve(game):
if (game board is full)
return SUCCESS
else
next_square = getNextEmptySquare()
for each value that can legally be put in next_square
put value in next_square (i.e. modify game state)
if (solve(game)) return SUCCESS
remove value from next_square (i.e. backtrack to a previous state)
return FAILURE
一旦你理解了这一点,接下来就要了解getNextEmptySquare()
的各种实现如何通过以不同方式修剪状态空间图来影响性能。
我没有在你的原始伪代码中看到任何递归或有条理的搜索,虽然它并不完全清楚,它似乎只是一遍又一遍地尝试随机排列?
答案 1 :(得分:1)
关于数独的观点是,你有大量的状态:9 ^ 81是78位的数字。因此,从左上角字段开始向右下角处理的任何“哑”回溯算法都可能陷入看似“无穷无尽”的循环中。
因此,我的建议是像人类一样解决数独:找到一个已经填充的数字只允许一个特定值的字段,并填写该字段。然后寻找下一个这样的领域。如果不存在更多空字段,其中只有一个值是合法的,请查找允许最多两个(或通常是最小可能数量)值的字段,并尝试其中一个值,并继续递归。回溯,如果出现任何矛盾,然后尝试一个字段的下一个值,它有几个替代方案。
在伪代码中:
solve(game)
if (game->is_solved())
game->print()
return SUCCESS
else
next_square = game->find_most_constrained_square()
foreach value = next_square->possible_values
mygame = copyof(game)
mygame->move(next_square, value)
if solve(mygame) return SUCCESS
endforeach
return FAILURE
endif
函数find_most_constrained_square()计算每个空字段,仍然可以放置多少个不同的数字,并将索引返回到具有最低可能性的字段。这甚至可能是一个有0个替代品的领域。
通过修改后的递归,即使在慢速计算机上使用慢速语言,Sudoko问题也应该很快得到解决。不要忘记丢弃在foreach内循环中制作的各种游戏状态副本!